Oracle分析函数/聚合函数使用总结 .
总结: group by rollup(field1,field2); group by cube(field1,field2); group by grouping sets(field1,field2); 生成测试脚本: [c-sharp:nogutter:collapse:showcolumns] view plaincopyprint? ·········10········20········30
总结:
group by rollup(field1,field2);
group by cube(field1,field2);
group by grouping sets(field1,field2);
生成测试脚本:
[c-sharp:nogutter:collapse:showcolumns] view plaincopyprint?
·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
- SQL> CREATE TABLE Bill
- 2 (Bill_Month VARCHAR2(6),
- 3 Area_Code INTEGER,
- 4 Net_Type CHAR(1),
- 5 Local_Fare NUMBER(10,2))
插入测试数据:
[c-sharp:nogutter:collapse:showcolumns] view plaincopyprint?
·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200405',5761,'J',5667089.85 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200405',5762,'G',6315075.96 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200405',5762,'J',6328716.15 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200405',5763,'G',8861742.59 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200405',5763,'J',7788036.32 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200405',5764,'G',6028670.45 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200405',5764,'J',6459121.49 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200405',5765,'G',13156065.77);
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200405',5765,'J',11901671.70);
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200406',5761,'G',7614587.96 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200406',5761,'J',5704343.05 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200406',5762,'G',6556992.60 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200406',5762,'J',6238068.05 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200406',5763,'G',9130055.46 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200406',5763,'J',7990460.25 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200406',5764,'G',6387706.01 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200406',5764,'J',6907481.66 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200406',5765,'G',13562968.81);
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200406',5765,'J',12495492.50);
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200407',5761,'G',7987050.65 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200407',5761,'J',5723215.28 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200407',5762,'G',6833096.68 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200407',5762,'J',6391201.44 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200407',5763,'G',9410815.91 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200407',5763,'J',8076677.41 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200407',5764,'G',6456433.23 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200407',5764,'J',6987660.53 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200407',5765,'G',14000101.20);
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200407',5765,'J',12301780.20);
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200408',5761,'G',8085170.84 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200408',5761,'J',6050611.37 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200408',5762,'G',6854584.22 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200408',5762,'J',6521884.50 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200408',5763,'G',9468707.65 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200408',5763,'J',8460049.43 );
- insert into Bill (Bill_Month,Area_Code,Net_Type,Local_Fare) values('200408',5764,'G',6587559.23 );
1.ROLLUP
ROLLUP是对group by的扩展,因此,它只能出现在group by子句中,依赖于分组的列,对每个分组会生成汇总数据,如下:
SELECT ….
FROM ….
GROUP BY ROLLUP(C1,C2,C3….C(n-1),C(n));
总共会进行n+1个分组,那么实际上有n+1个group by的union all结果。
第1个分组:全分组。C1,C2,C3….C(n-1),C(n)
第2个分组:C1,C2,C3….C(n-1);//这个分组实际上就是对前面前n-1列分组的小计.
----然后逐渐递减分组列
第n个分组:C1。对上一个分组的小计。
第n+1个分组。不分组全量汇总,相当于合计,也是对group by C1的小计,相当于group by null。
[c-sharp:nogutter:collapse:showcolumns] view plaincopyprint?
·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
- SELECT NVL(TO_CHAR(AREA_CODE), '总计') AREA_CODE,
- SUM(LOCAL_FARE) LOCAL_FARE
- FROM BILL
- GROUP BY ROLLUP(AREA_CODE)
--result
[c-sharp:nogutter:collapse:showcolumns] view plaincopyprint?
·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
- AREA_CODE LOCAL_FARE
- 5764 45814632.6
- 5761 54225413.04
- 5762 52039619.6
- 5763 69186545.02
- 5765 77418080.18
- 合计 298684290.44
2.cube
CUBE(交叉列表)也是对group by运算的一种扩展,它比rollup扩展更加精细,组合类型更多,rollup是按组合的列从右到左递减分组计算,而CUBE则是对所有可能的组合情况进行分组,这样分组的情况更多,覆盖所有的可能分组,并计算所有可能的分组的小计。比如:
CUBE(C1,C2,C3……C(N))对N个列进行CUBE分组,那么可能的分组情况有:
不分组:C(n,0)
取一列分组:C(n,1)
-----
取N列分组,全分组:C(n,n)
那么运用数学上的组合公式,得出所有所有可能的组合方式有:C(n,0)+C(n,1)+….+C(n,n)=2^n种。
我们以前面的rollup组合列为例子:rollup(name,month)是计算按区域名和月份分组以及每个区域的所有月份的小计以及总计。但是使用 cube(name,month)则有4种分组,比rollup多一个每个月的所有区域的小计。下面比较一下这两种分组方式:
分组公式 描述
rollup(name,month) 分组情况有:
group by name,month
group by name,null //每个区域所有月份小计
group by null,null //合计
cube(name,month) 分组情况有:
group by null,null //总计
group by null,month //每个月份的所有区域小计
group by name,null //每个区域的所有月份小计
group by name,month
CUBE使用方式:
和rollup一样,是
select …
from …
group by cube(分组列列表)
[c-sharp:nogutter:collapse:showcolumns] view plaincopyprint?
·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
- SELECT (NVL(BILL_MONTH, '月份')) BILL_MONTH,
- (TO_CHAR(AREA_CODE)) AREA_CODE,
- SUM(LOCAL_FARE) LOCAL_FARE
- FROM BILL
- GROUP BY CUBE(AREA_CODE, BILL_MONTH)
- ORDER BY BILL_MONTH, AREA_CODE
--result
[c-sharp:nogutter:collapse:showcolumns] view plaincopyprint?
·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
- BILL_MONTH AREA_CODE LOCAL_FARE
- 200405 5761 13060433.89
- 200405 5762 12643792.11
- 200405 5763 16649778.91
- 200405 5764 12487791.94
- 200405 5765 25057737.47
- 200405 79899534.32
- 200406 5761 13318931.01
- 200406 5762 12795060.65
- 200406 5763 17120515.71
- 200406 5764 13295187.67
- 200406 5765 26058461.31
- 200406 82588156.35
- 200407 5761 13710265.93
- 200407 5762 13224298.12
- 200407 5763 17487493.32
- 200407 5764 13444093.76
- 200407 5765 26301881.4
- 200407 84168032.53
- 200408 5761 14135782.21
- 200408 5762 13376468.72
- 200408 5763 17928757.08
- 200408 5764 6587559.23
- 200408 52028567.24
- 月份 5761 54225413.04
- 月份 5762 52039619.6
- 月份 5763 69186545.02
- 月份 5764 45814632.6
- 月份 5765 77418080.18
- 月份 298684290.44
扩展一下,GROUPING函数
[c-sharp:nogutter:collapse:showcolumns] view plaincopyprint?
·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
- SELECT DECODE(GROUPING(AREA_CODE), 1, 'all area', TO_CHAR(AREA_CODE)) AREA_CODE,
- DECODE(GROUPING(BILL_MONTH), 1, 'all month', BILL_MONTH) BILL_MONTH,
- SUM(LOCAL_FARE) LOCAL_FARE
- FROM bill
- GROUP BY CUBE(AREA_CODE, BILL_MONTH)
- ORDER BY AREA_CODE, BILL_MONTH NULLS LAST
--Result
[c-sharp:nogutter:collapse:showcolumns] view plaincopyprint?
·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
- 5761 200405 13060433.89
- 5761 200406 13318931.01
- 5761 200407 13710265.93
- 5761 200408 14135782.21
- 5761 all month 54225413.04
- 5762 200405 12643792.11
- 5762 200406 12795060.65
- 5762 200407 13224298.12
- 5762 200408 13376468.72
- 5762 all month 52039619.6
- 5763 200405 16649778.91
- 5763 200406 17120515.71
- 5763 200407 17487493.32
- 5763 200408 17928757.08
- 5763 all month 69186545.02
- 5764 200405 12487791.94
- 5764 200406 13295187.67
- 5764 200407 13444093.76
- 5764 200408 6587559.23
- 5764 all month 45814632.6
- 5765 200405 25057737.47
- 5765 200406 26058461.31
- 5765 200407 26301881.4
- 5765 all month 77418080.18
- all area 200405 79899534.32
- all area 200406 82588156.35
- all area 200407 84168032.53
- all area 200408 52028567.24
- all area all month 298684290.44
以上我们已经掌握了rollup,cube分组统计的知识。但是rollup和cube的分组统计包含了常规group by的统计明细以及对相关列的小计和合计值。如果我们需要的只是按每个分组列小计呢?oracle提供了grouping sets操作,对group by的另一个扩展,专门对分组列分别进行小计计算,不包括合计。使用方式和rollup和cube一样,都是放在group by中。如:
grouping sets(C1,C2….Cn)则分组方式有n种,等于列的数目。
group by c1,null,null…..null。
group by null,c2,null….null。
….
group by null,null……..Cn。
无group by null,null….null,也就是说没有合计行。
注意:grouping sets的统计结果和列的顺序无关。
有时我们只需要月、地区统计结果:
[c-sharp:nogutter:collapse:showcolumns] view plaincopyprint?
·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
- SELECT DECODE(GROUPING(AREA_CODE), 1, 'all area', TO_CHAR(AREA_CODE)) AREA_CODE,
- DECODE(GROUPING(BILL_MONTH), 1, 'all month', BILL_MONTH) BILL_MONTH,
- SUM(LOCAL_FARE) LOCAL_FARE
- FROM BILL
- GROUP BY GROUPING SETS(AREA_CODE, BILL_MONTH);
--result
[c-sharp:nogutter:collapse:showcolumns] view plaincopyprint?
·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
- AREA_CODE BILL_MONTH LOCAL_FARE
- 5764 all month 45814632.6
- 5761 all month 54225413.04
- 5762 all month 52039619.6
- 5763 all month 69186545.02
- 5765 all month 77418080.18
- all area 200405 79899534.32
- all area 200406 82588156.35
- all area 200407 84168032.53
- all area 200408 52028567.24
3.ROWS
rows是物理行,就是按行的位置,根据位置计算窗口范围
sql query
[c-sharp:collapse] view plaincopyprint?
- select bill_month,area_code,net_type,local_fare,sum(local_fare) over(order by local_fare rows between current row and 1 following) sum_fare
- from bill
- /
- BILL_M AREA_CODE N LOCAL_FARE SUM_FARE
- ------ ---------- - ---------- ----------
- 200405 5761 J 5667089.85 11371432.9
- 200406 5761 J 5704343.05 11733013.5
- 200405 5764 G 6028670.45 12266738.5
- 200406 5762 J 6238068.05 12625774.1
- 200406 5764 G 6387706.01 12846827.5
- 200405 5764 J 6459121.49 13016114.1
- 200406 5762 G 6556992.6 13464474.3
- 200406 5764 J 6907481.66 14522069.6
- 200406 5761 G 7614587.96 15402624.3
- 200405 5763 J 7788036.32 15778496.6
- 200406 5763 J 7990460.25 16852202.8
- BILL_M AREA_CODE N LOCAL_FARE SUM_FARE
- ------ ---------- - ---------- ----------
- 200405 5763 G 8861742.59 17991798.1
- 200406 5763 G 9130055.46 9130055.46
- 13 rows selected.
4.RANGE
RANGE是逻辑行,是按单元格值和偏移量计算窗口范围.
Range是逻辑行的范围 ,要经过 计算 的,一般range后面是数值或时间间隔等,这样根据 当行和range的表达 式能计算当
行对应的窗口范围;
[c-sharp:collapse] view plaincopyprint?
- select bill_month,area_code,net_type,local_fare,sum(local_fare) over(order by local_fare range between current row and 122350 following) sum_fare
- from bill
- /
- BILL_M AREA_CODE N LOCAL_FARE SUM_FARE
- ------ ---------- - ---------- ----------
- 200405 5761 J 5667089.85 11371432.9
- 200406 5761 J 5704343.05 5704343.05
- 200405 5764 G 6028670.45 6028670.45
- 200406 5762 J 6238068.05 6238068.05
- 200406 5764 G 6387706.01 12846827.5
- 200405 5764 J 6459121.49 13016114.1
- 200406 5762 G 6556992.6 6556992.6
- 200406 5764 J 6907481.66 6907481.66
- 200406 5761 G 7614587.96 7614587.96
- 200405 5763 J 7788036.32 7788036.32
- 200406 5763 J 7990460.25 7990460.25
- BILL_M AREA_CODE N LOCAL_FARE SUM_FARE
- ------ ---------- - ---------- ----------
- 200405 5763 G 8861742.59 8861742.59
- 200406 5763 G 9130055.46 9130055.46
- 13 rows selected.
5.RATIO_TO_REPORT
The RATIO_TO_REPORT
function computes the ratio of a value to the sum of a set of values. If the expression
value
expression
evaluates to NULL
,
RATIO_TO_REPORT
also evaluates to NULL
, but it is treated as zero for computing the sum of values for the denominator. Its syntax is:
RATIO_TO_REPORT ( expr ) OVER ( [query_partition_clause] )
[c-sharp:collapse] view plaincopyprint?
- select bill_month,area_code,net_type,local_fare,ratio_to_report(local_fare) over() rate
- from bill
- /
- BILL_M AREA_CODE N LOCAL_FARE RATE
- ------ ---------- - ---------- ----------
- 200405 5761 J 5667089.85 .062047734
- 200405 5763 G 8861742.59 .097025293
- 200405 5763 J 7788036.32 .085269516
- 200405 5764 G 6028670.45 .066006602
- 200405 5764 J 6459121.49 .070719517
- 200406 5761 G 7614587.96 .083370468
- 200406 5761 J 5704343.05 .062455612
- 200406 5762 G 6556992.6 .071791086
- 200406 5762 J 6238068.05 .068299251
- 200406 5763 G 9130055.46 .099962992
- 200406 5763 J 7990460.25 .087485812
- BILL_M AREA_CODE N LOCAL_FARE RATE
- ------ ---------- - ---------- ----------
- 200406 5764 G 6387706.01 .069937604
- 200406 5764 J 6907481.66 .075628515

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Solutions to Oracle cannot be opened include: 1. Start the database service; 2. Start the listener; 3. Check port conflicts; 4. Set environment variables correctly; 5. Make sure the firewall or antivirus software does not block the connection; 6. Check whether the server is closed; 7. Use RMAN to recover corrupt files; 8. Check whether the TNS service name is correct; 9. Check network connection; 10. Reinstall Oracle software.

The method to solve the Oracle cursor closure problem includes: explicitly closing the cursor using the CLOSE statement. Declare the cursor in the FOR UPDATE clause so that it automatically closes after the scope is ended. Declare the cursor in the USING clause so that it automatically closes when the associated PL/SQL variable is closed. Use exception handling to ensure that the cursor is closed in any exception situation. Use the connection pool to automatically close the cursor. Disable automatic submission and delay cursor closing.

In Oracle, the FOR LOOP loop can create cursors dynamically. The steps are: 1. Define the cursor type; 2. Create the loop; 3. Create the cursor dynamically; 4. Execute the cursor; 5. Close the cursor. Example: A cursor can be created cycle-by-circuit to display the names and salaries of the top 10 employees.

Oracle views can be exported through the EXP utility: Log in to the Oracle database. Start the EXP utility, specifying the view name and export directory. Enter export parameters, including target mode, file format, and tablespace. Start exporting. Verify the export using the impdp utility.

When Oracle log files are full, the following solutions can be adopted: 1) Clean old log files; 2) Increase the log file size; 3) Increase the log file group; 4) Set up automatic log management; 5) Reinitialize the database. Before implementing any solution, it is recommended to back up the database to prevent data loss.

Oracle is not only a database company, but also a leader in cloud computing and ERP systems. 1. Oracle provides comprehensive solutions from database to cloud services and ERP systems. 2. OracleCloud challenges AWS and Azure, providing IaaS, PaaS and SaaS services. 3. Oracle's ERP systems such as E-BusinessSuite and FusionApplications help enterprises optimize operations.

Building a Hadoop Distributed File System (HDFS) on a CentOS system requires multiple steps. This article provides a brief configuration guide. 1. Prepare to install JDK in the early stage: Install JavaDevelopmentKit (JDK) on all nodes, and the version must be compatible with Hadoop. The installation package can be downloaded from the Oracle official website. Environment variable configuration: Edit /etc/profile file, set Java and Hadoop environment variables, so that the system can find the installation path of JDK and Hadoop. 2. Security configuration: SSH password-free login to generate SSH key: Use the ssh-keygen command on each node

To stop an Oracle database, perform the following steps: 1. Connect to the database; 2. Shutdown immediately; 3. Shutdown abort completely.
