


Vom Anfänger bis zum Fortgeschrittenen, Veranschaulichung der Zeichenmethoden von Matplotlib
Illustrierte Matplotlib-Zeichenmethoden: Von einfach bis fortgeschritten sind spezifische Codebeispiele erforderlich.
Einführung:
Matplotlib ist eine leistungsstarke Zeichenbibliothek, die häufig zur Datenvisualisierung verwendet wird. Ob es sich um ein einfaches Liniendiagramm oder ein komplexes Streudiagramm oder 3D-Diagramm handelt, Matplotlib kann Ihre Anforderungen erfüllen. In diesem Artikel werden die Zeichenmethoden von Matplotlib ausführlich vorgestellt, von einfach bis fortgeschritten, und spezifische Codebeispiele bereitgestellt.
1. Installation und Import von Matplotlib
- Matplotlib installieren
Verwenden Sie den Befehl pip install matplotlib im Terminal, um Matplotlib zu installieren. - Matplotlib importieren
Verwenden Sie „import matplotlib.pyplot as plt“, um Matplotlib zu importieren, und vereinbaren Sie den häufig verwendeten Alias „plt“, um nachfolgende Aufrufe zu erleichtern.
2. Zeichnen Sie ein einfaches Liniendiagramm
Das Folgende ist ein einfaches Beispiel für ein Liniendiagramm, das die Umsatzveränderungen eines Unternehmens in den letzten 12 Monaten zeigt.
import matplotlib.pyplot as plt # 数据 months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] sales = [100, 120, 150, 130, 140, 160, 180, 170, 190, 200, 210, 220] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制折线图 plt.plot(months, sales, marker='o', linestyle='-', color='blue') # 设置标题和标签 plt.title('Sales Trend') plt.xlabel('Months') plt.ylabel('Sales') # 显示图表 plt.show()
3. Benutzerdefinierter Diagrammstil
Matplotlib bietet eine Fülle von Diagrammstileinstellungen, die Ihre Diagramme persönlicher und schöner machen können.
Farbe und Linienstil anpassen
plt.plot(months, sales, marker='o', linestyle='-', color='blue')
Nach dem Login kopierenSie können den Markierungsstil über den Marker-Parameter, den Linienstil-Parameter über den Linienstil-Parameter und die Farbe über den Farbparameter festlegen.
Legen Sie die Legende fest
plt.plot(months, sales, marker='o', linestyle='-', color='blue', label='Sales') plt.legend()
Nach dem Login kopierenVerwenden Sie den Label-Parameter, um die Legendenbezeichnung festzulegen, und verwenden Sie dann die Methode plt.legend(), um die Legende anzuzeigen.
Gitterlinien hinzufügen
plt.grid(True)
Nach dem Login kopierenVerwenden Sie die Methode plt.grid(True), um Gitterlinien hinzuzufügen.
4. Zeichnen Sie Streudiagramme und Balkendiagramme
Zusätzlich zu Liniendiagrammen unterstützt Matplotlib auch das Zeichnen von Streudiagrammen und Balkendiagrammen.
- Zeichnen Sie ein Streudiagramm
Nachfolgend finden Sie ein einfaches Beispiel für ein Streudiagramm, das die Beziehung zwischen Temperatur und Niederschlag in einer Stadt zeigt.
import matplotlib.pyplot as plt # 数据 temperature = [15, 19, 22, 18, 25, 28, 30, 29, 24, 20] rainfall = [20, 40, 30, 10, 55, 60, 70, 50, 45, 35] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制散点图 plt.scatter(temperature, rainfall, color='red') # 设置标题和标签 plt.title('Temperature vs Rainfall') plt.xlabel('Temperature (°C)') plt.ylabel('Rainfall (mm)') # 显示图表 plt.show()
- Zeichnen Sie ein Balkendiagramm
Unten sehen Sie ein einfaches Beispiel für ein Balkendiagramm, das die Verkäufe eines bestimmten Produkts in verschiedenen Regionen zeigt.
import matplotlib.pyplot as plt # 数据 regions = ['North', 'South', 'East', 'West'] sales = [100, 120, 150, 130] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制条形图 plt.bar(regions, sales, color='blue') # 设置标题和标签 plt.title('Sales by Region') plt.xlabel('Region') plt.ylabel('Sales') # 显示图表 plt.show()
5. Erweiterte Diagramme zeichnen
Matplotlib kann auch komplexere Diagramme zeichnen, wie zum Beispiel Kreisdiagramme und 3D-Diagramme.
- Zeichnen Sie ein Kreisdiagramm
Unten sehen Sie ein einfaches Beispiel für ein Kreisdiagramm, das den Umsatzanteil verschiedener Produkte in einem Markt zeigt.
import matplotlib.pyplot as plt # 数据 products = ['A', 'B', 'C', 'D'] sales = [30, 20, 25, 15] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制饼图 plt.pie(sales, labels=products, autopct='%.1f%%') # 设置标题 plt.title('Sales by Product') # 显示图表 plt.show()
- Zeichnen Sie ein 3D-Diagramm
Das Folgende ist ein einfaches Beispiel für ein 3D-Diagramm, das das dreidimensionale Oberflächendiagramm einer bestimmten Funktion zeigt.
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 数据 x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) Z = np.sin(np.sqrt(X**2 + Y**2)) # 创建图表和画布 fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') # 绘制3D图 ax.plot_surface(X, Y, Z, cmap='viridis') # 设置标题和标签 ax.set_title('3D Surface Plot') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') # 显示图表 plt.show()
Fazit:
Durch die Einführung und Beispiele dieses Artikels können wir die Zeichenmethoden und Verwendungstechniken von Matplotlib verstehen. Ob es sich um ein einfaches Liniendiagramm oder ein komplexes Streudiagramm und 3D-Diagramm handelt, Matplotlib bietet eine Fülle von Funktionen und Optionen, um unterschiedliche Anforderungen an die Datenvisualisierung zu erfüllen. Ich hoffe, dass dieser Artikel sowohl für Anfänger als auch für erfahrene Benutzer hilfreich ist, damit sie Matplotlib besser für die Datenanalyse und -anzeige verwenden können.
Das obige ist der detaillierte Inhalt vonVom Anfänger bis zum Fortgeschrittenen, Veranschaulichung der Zeichenmethoden von Matplotlib. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
