Wie implementiert man den Dijkstra-Algorithmus mit Python?
Wie implementiert man den Dijkstra-Algorithmus mit Python?
Einführung:
Dijkstras Algorithmus ist ein häufig verwendeter Single-Source-Algorithmus für den kürzesten Pfad, mit dem das Problem des kürzesten Pfads zwischen zwei Scheitelpunkten in einem gewichteten Diagramm gelöst werden kann. In diesem Artikel wird detailliert beschrieben, wie Sie Python zum Implementieren des Dijkstra-Algorithmus verwenden, einschließlich Algorithmusprinzipien und spezifischer Codebeispiele.
- Algorithmusprinzip
Die Kernidee des Dijkstra-Algorithmus besteht darin, schrittweise den kürzesten Weg vom Quellpunkt zu anderen Scheitelpunkten zu bestimmen, indem kontinuierlich der Scheitelpunkt ausgewählt wird, der dem Quellpunkt am nächsten liegt. Der Algorithmus ist hauptsächlich in die folgenden Schritte unterteilt:
(1) Initialisierung: Stellen Sie den Abstand vom Quellpunkt zu anderen Eckpunkten auf unendlich und den Abstand vom Quellpunkt zu sich selbst auf 0 ein. Erstellen Sie gleichzeitig ein Wörterbuch, das den kürzesten Weg aufzeichnet, und eine Sammlung, die die besuchten Scheitelpunkte aufzeichnet.
(2) Wählen Sie den nicht besuchten Scheitelpunkt aus, der dem Quellpunkt derzeit am nächsten liegt, markieren Sie ihn als besucht und aktualisieren Sie den Abstand vom Quellpunkt zu seinen angrenzenden Scheitelpunkten.
(3) Wiederholen Sie die obigen Schritte, bis alle Stützpunkte besucht wurden oder derzeit keine auswählbaren Stützpunkte vorhanden sind. - Code-Implementierung
Das Folgende ist ein Codebeispiel mit Python zur Implementierung des Dijkstra-Algorithmus:
import sys def dijkstra(graph, start): # 初始化 distances = {vertex: sys.maxsize for vertex in graph} # 记录源点到各顶点的距离 distances[start] = 0 visited = set() previous_vertices = {vertex: None for vertex in graph} # 记录最短路径的前驱结点 while graph: # 选择当前距离源点最近的未访问顶点 current_vertex = min( {vertex: distances[vertex] for vertex in graph if vertex not in visited}, key=distances.get ) # 标记为已访问 visited.add(current_vertex) # 更新当前顶点的相邻顶点的距离 for neighbor in graph[current_vertex]: distance = distances[current_vertex] + graph[current_vertex][neighbor] if distance < distances[neighbor]: distances[neighbor] = distance previous_vertices[neighbor] = current_vertex # 当前顶点从图中移除 graph.pop(current_vertex) return distances, previous_vertices # 示例使用 if __name__ == '__main__': # 定义图结构(字典表示) graph = { 'A': {'B': 5, 'C': 1}, 'B': {'A': 5, 'C': 2, 'D': 1}, 'C': {'A': 1, 'B': 2, 'D': 4, 'E': 8}, 'D': {'B': 1, 'C': 4, 'E': 3, 'F': 6}, 'E': {'C': 8, 'D': 3}, 'F': {'D': 6} } start_vertex = 'A' distances, previous_vertices = dijkstra(graph, start_vertex) # 打印结果 for vertex in distances: path = [] current_vertex = vertex while current_vertex is not None: path.insert(0, current_vertex) current_vertex = previous_vertices[current_vertex] print(f'最短路径: {path}, 最短距离: {distances[vertex]}')
Das obige Codebeispiel zeigt, wie der Dijkstra-Algorithmus verwendet wird, um den kürzesten Pfad und die kürzeste Entfernung vom Quellpunkt zu jedem Scheitelpunkt in einem gegebenen Punkt zu finden Diagrammstruktur.
Fazit:
Dieser Artikel stellt die Prinzipien des Dijkstra-Algorithmus im Detail vor und gibt Codebeispiele für die Implementierung des Dijkstra-Algorithmus mit Python. Leser können den Beispielcode ändern und erweitern, um ihn auf komplexere Szenarien anzuwenden. Durch die Beherrschung dieses Algorithmus können Leser das Problem der kürzesten Pfade in gewichteten Diagrammen besser lösen.
Das obige ist der detaillierte Inhalt vonWie implementiert man den Dijkstra-Algorithmus mit Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











PHP ist hauptsächlich prozedurale Programmierung, unterstützt aber auch die objektorientierte Programmierung (OOP). Python unterstützt eine Vielzahl von Paradigmen, einschließlich OOP, funktionaler und prozeduraler Programmierung. PHP ist für die Webentwicklung geeignet, und Python eignet sich für eine Vielzahl von Anwendungen wie Datenanalyse und maschinelles Lernen.

PHP eignet sich für Webentwicklung und schnelles Prototyping, und Python eignet sich für Datenwissenschaft und maschinelles Lernen. 1.PHP wird für die dynamische Webentwicklung verwendet, mit einfacher Syntax und für schnelle Entwicklung geeignet. 2. Python hat eine kurze Syntax, ist für mehrere Felder geeignet und ein starkes Bibliotheksökosystem.

Um den Python-Code im Sublime-Text auszuführen, müssen Sie zuerst das Python-Plug-In installieren, dann eine .py-Datei erstellen und den Code schreiben, und drücken Sie schließlich Strg B, um den Code auszuführen, und die Ausgabe wird in der Konsole angezeigt.

PHP entstand 1994 und wurde von Rasmuslerdorf entwickelt. Es wurde ursprünglich verwendet, um Website-Besucher zu verfolgen und sich nach und nach zu einer serverseitigen Skriptsprache entwickelt und in der Webentwicklung häufig verwendet. Python wurde Ende der 1980er Jahre von Guidovan Rossum entwickelt und erstmals 1991 veröffentlicht. Es betont die Lesbarkeit und Einfachheit der Code und ist für wissenschaftliche Computer, Datenanalysen und andere Bereiche geeignet.

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

Golang ist in Bezug auf Leistung und Skalierbarkeit besser als Python. 1) Golangs Kompilierungseigenschaften und effizientes Parallelitätsmodell machen es in hohen Parallelitätsszenarien gut ab. 2) Python wird als interpretierte Sprache langsam ausgeführt, kann aber die Leistung durch Tools wie Cython optimieren.

Das Schreiben von Code in Visual Studio Code (VSCODE) ist einfach und einfach zu bedienen. Installieren Sie einfach VSCODE, erstellen Sie ein Projekt, wählen Sie eine Sprache aus, erstellen Sie eine Datei, schreiben Sie Code, speichern und führen Sie es aus. Die Vorteile von VSCODE umfassen plattformübergreifende, freie und open Source, leistungsstarke Funktionen, reichhaltige Erweiterungen sowie leichte und schnelle.

Das Ausführen von Python-Code in Notepad erfordert, dass das ausführbare Python-ausführbare Datum und das NPPEXEC-Plug-In installiert werden. Konfigurieren Sie nach dem Installieren von Python und dem Hinzufügen des Pfades den Befehl "Python" und den Parameter "{current_directory} {file_name}" im NPPExec-Plug-In, um Python-Code über den Shortcut-Taste "F6" in Notoza auszuführen.
