Inhaltsverzeichnis
Ray verstehen
Die Ray Framework Architecture
Installation und Setup
Ray und Chatgpt: Eine leistungsstarke Partnerschaft
Erfahren Sie mehr
Schlussfolgerung
Heim Technologie-Peripheriegeräte KI Verteilte Verarbeitung mit Ray Framework in Python

Verteilte Verarbeitung mit Ray Framework in Python

Mar 10, 2025 am 09:59 AM

die Kraft der verteilten Verarbeitung mit Strahl nutzen: Ein umfassendes Leitfaden

In der heutigen datengesteuerten Welt erfordern das exponentielle Wachstum von Daten und die steigenden Rechenanforderungen eine Verschiebung von herkömmlichen Datenverarbeitungsmethoden. Die verteilte Verarbeitung bietet eine leistungsstarke Lösung, in der komplexe Aufgaben in kleinere, gleichzeitig ausführbare Komponenten über mehrere Maschinen hinweg unterteilt werden. Dieser Ansatz schaltet eine effiziente und effektive groß angelegte Berechnung frei.

Der eskalierende Bedarf an Rechenleistung in maschinellem Lernen (ML) -Modelltraining ist besonders bemerkenswert. Seit 2010 haben die Computeranforderungen alle 18 Monate um das Zehnfache gestiegen und das Wachstum von KI -Beschleunigern wie GPUs und TPUs übertroffen, die sich nur im gleichen Zeitraum verdoppelt haben. Dies erfordert alle 18 Monate eine fünffache Zunahme der KI-Beschleuniger oder Knoten, um modernste ML-Modelle zu trainieren. Distributed Computing entsteht als unverzichtbare Lösung.

Dieses Tutorial führt Ray vor, ein Open-Source-Python-Framework, das das verteilte Computing vereinfacht.

Distributed Processing using Ray framework in Python

Ray verstehen

Ray ist ein Open-Source-Framework, das für die Erstellung skalierbarer und verteilter Python-Anwendungen entwickelt wurde. Sein intuitives Programmiermodell vereinfacht die Nutzung des parallelen und verteilten Computers. Zu den wichtigsten Funktionen gehören:

  • Aufgabe Parallelität: Der Python -Code leicht parallelisieren Sie mehrere CPU -Kerne oder Maschinen für eine schnellere Ausführung.
  • verteiltes Computing: skalierende Anwendungen über einzelne Maschinen mit Tools für verteilte Planung, Fehlertoleranz und Ressourcenverwaltung.
  • Remote -Funktion Ausführung: Python -Funktionen ausführen von Clusterknoten für eine verbesserte Effizienz ausführen.
  • Verteilte Datenverarbeitung: Umfangsdatensätze mit verteilten Datenrahmen und Objektspeichern verwandeln, um verteilte Vorgänge zu aktivieren.
  • Unterstützung der Verstärkung Lernunterstützung: Integriert sich in Verstärkungslernenalgorithmen und verteiltes Training für ein effizientes Modelltraining.

Die Ray Framework Architecture

Distributed Processing using Ray framework in Python

Rays Architektur umfasst drei Schichten:

  1. Ray AI Laufzeit (Luft): Eine Sammlung von Python -Bibliotheken für ML -Ingenieure und Datenwissenschaftler, die ein einheitliches, skalierbares Toolkit für die Entwicklung von ML -Anwendungen bereitstellen. Air enthält Ray -Daten, Ray -Zug, Ray Tune, Ray Serve und Ray Rllib.

  2. Strahlkern: Eine allgemeine verteilte Computerbibliothek zur Skalierung von Python-Anwendungen und Beschleunigung von ML-Workloads. Schlüsselkonzepte umfassen:

    • Aufgaben: unabhängig ausführbare Funktionen für separate Arbeitnehmer mit Ressourcenspezifikationen.
    • Akteure: staatliche Besitz von Arbeitnehmern oder Diensten, die die Funktionalität über einfache Funktionen hinaus erweitern.
    • Objekte: Remote -Objekte, die über den Cluster gespeichert und zugegriffen werden, unter Verwendung von Objektreferenzen.
  3. Strahlcluster: Eine Gruppe von Arbeiterknoten, die mit einem zentralen Kopfknoten verbunden sind, der in der Lage ist, fixiert oder dynamisch zu autoscalieren. Schlüsselkonzepte umfassen:

    • Kopfknoten: verwaltet den Cluster, einschließlich der Autoscaler- und Treiberprozesse.
    • Worker -Knoten: Benutzercode in Aufgaben und Akteuren ausführen, verwalten Sie Objektspeicher und -verteilung.
    • Autoscaling: passt die Clustergröße dynamisch basierend auf den Ressourcenanforderungen an.
    • Strahljob: Eine einzelne Anwendung, die aus Aufgaben, Objekten und Akteuren aus einem gemeinsamen Skript besteht.

Distributed Processing using Ray framework in Python

Installation und Setup

Strahl mit PIP installieren:

für ML -Anwendungen: pip install ray[air]

für allgemeine Python -Anwendungen: pip install ray[default]

Ray und Chatgpt: Eine leistungsstarke Partnerschaft

Distributed Processing using Ray framework in Python

OpenAs ChatGPT nutzt die parallelisierten Modelltrainingsfunktionen von Ray und ermöglicht das Training mit massiven Datensätzen. Die verteilten Datenstrukturen und Optimierer von Ray sind entscheidend für die Verwaltung und Verarbeitung der großen Datenmengen.

Erfahren Sie mehr

Erforschen verwandte Themen:

Ein einfaches Beispiel für Strahlungsaufgaben

import ray
ray.init()

@ray.remote
def square(x):
    return x * x

futures = [square.remote(i) for i in range(4)]
print(ray.get(futures))
Nach dem Login kopieren
Dieses Beispiel zeigt, dass eine einfache Aufgabe remote ausgeführt wird:

Parallele Hyperparameter-Tuning mit Ray und Scikit-Learn

import numpy as np
from sklearn.datasets import load_digits
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC
import joblib
from ray.util.joblib import register_ray

# ... (rest of the code as in the original input) ...
Nach dem Login kopieren
Dieses Beispiel zeigt eine parallele Hyperparameterabstimmung eines SVM -Modells:

Distributed Processing using Ray framework in Python

Schlussfolgerung

Ray bietet einen optimierten Ansatz für die verteilte Verarbeitung und stärkt die effiziente Skalierung von AI- und Python -Anwendungen. Seine Funktionen und Fähigkeiten machen es zu einem wertvollen Instrument zur Bewältigung komplexer recherittlicher Herausforderungen. Erwägen Sie, alternative parallele Programmierrahmen wie Dask für breitere Anwendungsmöglichkeiten zu untersuchen.

Das obige ist der detaillierte Inhalt vonVerteilte Verarbeitung mit Ray Framework in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1677
14
PHP-Tutorial
1279
29
C#-Tutorial
1257
24
Wie baue ich multimodale KI -Agenten mit AGNO -Framework auf? Wie baue ich multimodale KI -Agenten mit AGNO -Framework auf? Apr 23, 2025 am 11:30 AM

Während der Arbeit an Agentic AI navigieren Entwickler häufig die Kompromisse zwischen Geschwindigkeit, Flexibilität und Ressourceneffizienz. Ich habe den Agenten-KI-Framework untersucht und bin auf Agno gestoßen (früher war es phi-

OpenAI-Verschiebungen Fokus mit GPT-4.1, priorisiert die Codierung und Kosteneffizienz OpenAI-Verschiebungen Fokus mit GPT-4.1, priorisiert die Codierung und Kosteneffizienz Apr 16, 2025 am 11:37 AM

Die Veröffentlichung umfasst drei verschiedene Modelle, GPT-4.1, GPT-4.1 Mini und GPT-4.1-Nano, die einen Zug zu aufgabenspezifischen Optimierungen innerhalb der Landschaft des Großsprachenmodells signalisieren. Diese Modelle ersetzen nicht sofort benutzergerichtete Schnittstellen wie

Wie füge ich eine Spalte in SQL hinzu? - Analytics Vidhya Wie füge ich eine Spalte in SQL hinzu? - Analytics Vidhya Apr 17, 2025 am 11:43 AM

SQL -Änderungstabellanweisung: Dynamisches Hinzufügen von Spalten zu Ihrer Datenbank Im Datenmanagement ist die Anpassungsfähigkeit von SQL von entscheidender Bedeutung. Müssen Sie Ihre Datenbankstruktur im laufenden Flug anpassen? Die Änderungstabelleerklärung ist Ihre Lösung. Diese Anleitung Details Hinzufügen von Colu

Raketenstartsimulation und -analyse unter Verwendung von Rocketpy - Analytics Vidhya Raketenstartsimulation und -analyse unter Verwendung von Rocketpy - Analytics Vidhya Apr 19, 2025 am 11:12 AM

Simulieren Raketenstarts mit Rocketpy: Eine umfassende Anleitung Dieser Artikel führt Sie durch die Simulation von Rocketpy-Starts mit hoher Leistung mit Rocketpy, einer leistungsstarken Python-Bibliothek. Wir werden alles abdecken, von der Definition von Raketenkomponenten bis zur Analyse von Simula

DeepCoder-14b: Der Open-Source-Wettbewerb mit O3-Mini und O1 DeepCoder-14b: Der Open-Source-Wettbewerb mit O3-Mini und O1 Apr 26, 2025 am 09:07 AM

In einer bedeutenden Entwicklung für die KI-Community haben Agentica und gemeinsam KI ein Open-Source-KI-Codierungsmodell namens DeepCoder-14b veröffentlicht. Angebotsfunktionen der Codegenerierung mit geschlossenen Wettbewerbern wie OpenAI,

Die Eingabeaufforderung: Chatgpt generiert gefälschte Pässe Die Eingabeaufforderung: Chatgpt generiert gefälschte Pässe Apr 16, 2025 am 11:35 AM

Der Chip Giant Nvidia sagte am Montag, es werde zum ersten Mal in den USA die Herstellung von KI -Supercomputern - Maschinen mit der Verarbeitung reichlicher Daten herstellen und komplexe Algorithmen ausführen. Die Ankündigung erfolgt nach Präsident Trump SI

Guy Peri hilft bei der Zukunft von McCormick durch Datenumwandlung Guy Peri hilft bei der Zukunft von McCormick durch Datenumwandlung Apr 19, 2025 am 11:35 AM

Guy Peri ist McCormicks Chief Information und Digital Officer. Obwohl Peri nur sieben Monate nach seiner Rolle eine umfassende Transformation der digitalen Fähigkeiten des Unternehmens vorantreibt. Sein beruflicher Fokus auf Daten und Analysen informiert

Runway Ai's Gen-4: Wie kann eine Montage über Absurd hinausgehen Runway Ai's Gen-4: Wie kann eine Montage über Absurd hinausgehen Apr 16, 2025 am 11:45 AM

Die Filmindustrie befindet sich neben allen kreativen Sektoren vom digitalen Marketing bis hin zu sozialen Medien an einer technologischen Kreuzung. Als künstliche Intelligenz beginnt, jeden Aspekt des visuellen Geschichtenerzählens umzugestiegen und die Landschaft der Unterhaltung zu verändern

See all articles