Heim Backend-Entwicklung Python-Tutorial Die vollständige Einführung in die Zeitreihenklassifizierung in Python

Die vollständige Einführung in die Zeitreihenklassifizierung in Python

Jan 15, 2025 am 06:57 AM

Zeitreihendaten sind in zahlreichen Branchen allgegenwärtig, doch während Zeitreihenprognosen große Aufmerksamkeit erhalten, wird die Zeitreihenklassifizierung oft übersehen. Dieser Artikel bietet eine umfassende Einführung in die Zeitreihenklassifizierung, untersucht ihre realen Anwendungen, überprüft verschiedene Methoden und demonstriert einige dieser Techniken in einem Python-basierten Klassifizierungsprojekt. Fangen wir an!

Zeitreihenklassifizierung verstehen

Die Zeitreihenklassifizierung ist eine überwachte maschinelle Lerntechnik, bei der ein oder mehrere über die Zeit gemessene Merkmale verwendet werden, um eine Kategorie zuzuweisen. Das Ziel besteht darin, die Zeitreihe zu kennzeichnen, anstatt zukünftige Werte vorherzusagen.

Reale Anwendungen der Zeitreihenklassifizierung

Die Klassifizierung von Zeitreihen findet häufig Anwendung, insbesondere bei Sensordaten. Zu den wichtigsten Anwendungen gehören:

  • Vorausschauende Wartung:Überwachung der Ausrüstung, um potenzielle Ausfälle vorherzusehen.
  • Gesundheitswesen: Analyse von Elektrokardiogramm-Daten (EKG) zur Beurteilung der Gesundheit des Patienten.
  • Spracherkennung: Identifizieren gesprochener Wörter und Sprecher anhand von Schallwellenmustern.
  • Lebensmittelspektroskopie:Bestimmung des Alkoholgehalts oder Identifizierung von Lebensmittelbestandteilen anhand von Spektroskopiedaten.
  • Cybersicherheit:Erkennung anomaler Aktivitäten, die auf Betrug oder Verstöße hinweisen.

Diese vielfältigen Anwendungen unterstreichen die Bedeutung der Zeitreihenklassifizierung in verschiedenen Bereichen.

Übersicht über Zeitreihenklassifizierungsmodelle

Es gibt zahlreiche Ansätze zur Zeitreihenklassifizierung. Dieser Abschnitt bietet einen kurzen Überblick über die einzelnen Themen. Ausführlichere Erklärungen finden Sie in diesem speziellen Leitfaden [Link zum Leitfaden, falls verfügbar].

1. Distanzbasierte Modelle: Diese Modelle nutzen Distanzmetriken (z. B. die euklidische Distanz), um Proben zu klassifizieren. Dynamic Time Warping (DTW) bietet einen robusteren Ansatz, der Serien unterschiedlicher Länge berücksichtigt und leicht phasenverschobene Muster verarbeitet. Beispiele hierfür sind K-Nearest Neighbors (KNN) und ShapeDTW.

The Complete Introduction to Time Series Classification in Python

2. Wörterbuchbasierte Modelle: Diese Modelle kodieren Serienmuster mithilfe von Symbolen und nutzen die Symbolhäufigkeit zur Klassifizierung. Beispiele hierfür sind BOSS, WEASEL, TDE und MUSE.

3. Ensemble-Methoden: Hierbei handelt es sich nicht um Modelle selbst, sondern um Frameworks, die mehrere Basisschätzer für eine verbesserte Vorhersage kombinieren. Ein wesentlicher Vorteil ist ihre Fähigkeit, multivariate Daten mithilfe univariater Modelle (z. B. Bagging) zu verarbeiten. Beispiele hierfür sind Bagging, Weighted Ensemble und Time Series Forest.

4. Merkmalsbasierte Methoden: Diese Methoden extrahieren Merkmale aus Zeitreihen (z. B. zusammenfassende Statistiken, Catch22, Matrixprofil, TSFresh), die dann zum Trainieren eines Klassifikators verwendet werden.

5. Intervallbasierte Modelle: Diese extrahieren mehrere Intervalle aus Zeitreihen, berechnen Features mit den oben genannten Methoden und trainieren dann einen Klassifikator. Beispiele hierfür sind RISE, CIF und DrCIF.

6. Kernelbasierte Modelle: Diese Modelle verwenden Kernelfunktionen, um Zeitreihen zur einfacheren Klassifizierung einem höherdimensionalen Raum zuzuordnen. Beispiele hierfür sind Support Vector Classifier (SVC), Rocket und Arsenal (ein Ensemble von Rocket).

7. Shapelet-Klassifikator: Dieser Klassifikator identifiziert und verwendet Shapelets (unterscheidende Teilsequenzen) für die Klassifizierung basierend auf Distanzvergleichen.

8. Meta-Klassifikatoren: Diese kombinieren verschiedene Methoden für eine robuste Klassifizierungsleistung. HIVE-COTE, das TDE, Shapelet, DrCIF und Arsenal kombiniert, ist ein Beispiel, obwohl es rechenintensiv ist.

Die Wahl der Methode hängt von Faktoren wie Dateneigenschaften, Rechenressourcen und gewünschter Genauigkeit ab.

Praktisches Zeitreihenklassifizierungsprojekt (Python)

In diesem Abschnitt werden einige der oben genannten Techniken auf den BasicMotions-Datensatz [Link zum Datensatz] angewendet, der Beschleunigungsmesser- und Gyroskopdaten von Personen umfasst, die verschiedene Aktivitäten ausführen (Stehen, Gehen, Laufen, Badminton).

Einrichtung:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sktime.datasets import load_basic_motions
from sklearn.model_selection import GridSearchCV, KFold
Nach dem Login kopieren

Datenladen:

X_train, y_train = load_basic_motions(split='train', return_type='numpy3D')
X_test, y_test = load_basic_motions(split='test', return_type='numpy3D')
Nach dem Login kopieren

Datenvisualisierung (Beispiel für den Vergleich von Gehen und Badminton):

# ... (Visualization code as provided in the original article) ...
Nach dem Login kopieren

KNN-Klassifizierung:

# ... (KNN code as provided in the original article) ...
Nach dem Login kopieren

Abpacken mit WEASEL:

# ... (Bagging with WEASEL code as provided in the original article) ...
Nach dem Login kopieren

Bewertung:

# ... (Evaluation code as provided in the original article) ...
Nach dem Login kopieren

The Complete Introduction to Time Series Classification in Python The Complete Introduction to Time Series Classification in Python The Complete Introduction to Time Series Classification in Python

Fazit

Dieser Artikel bietet eine Einführung in die Zeitreihenklassifizierung und behandelt deren Anwendungen und verschiedene Methoden. Das Praxisprojekt demonstrierte die Anwendung von KNN und das Absacken mit WEASEL. Die weitere Erforschung dieses Bereichs wird gefördert.

Nächste Schritte

Um weiter zu lernen, sollten Sie die im Originalartikel erwähnten Ressourcen erkunden, einschließlich eines Leitfadens zu Zeitreihenklassifizierungsmethoden und eines Kurses zu diesem Thema.

Referenzen

  • BasicMotions-Datensatz – [Link zum Datensatz]
  • Skizeit – [Link zur Skizeit]

Das obige ist der detaillierte Inhalt vonDie vollständige Einführung in die Zeitreihenklassifizierung in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1675
14
PHP-Tutorial
1278
29
C#-Tutorial
1257
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für wissenschaftliches Computer: Ein detailliertes Aussehen Python für wissenschaftliches Computer: Ein detailliertes Aussehen Apr 19, 2025 am 12:15 AM

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Python für die Webentwicklung: Schlüsselanwendungen Python für die Webentwicklung: Schlüsselanwendungen Apr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

See all articles