Inhaltsverzeichnis
Grundlagen
1. Neue Spalte erstellen
2. Vorhandene Spalten ändern
Mittelstufe
3. Ausdrucksbasierte Zuordnung
4. Bedingte Zuweisung verwenden
5. Verwenden Sie mehrere Spalten in Ausdrücken
Erweitertes Kapitel
6. Vektorisierungsvorgang
7. Verwenden Sie np.where für bedingte logische Zuweisung
8. Verwenden Sie externe Funktionen, um Werte zuzuweisen
9. Kettenbetrieb
10. Weisen Sie mehrere Spalten gleichzeitig zu
Experten
11. Dynamische Spaltenzuweisung
12. Externe Datenzuweisung verwenden
13. Leistungsoptimierung:
Zusammenfassung
Heim Backend-Entwicklung Python-Tutorial Erklärung der Syntax „df[&#column&#] = expression' in Pandas

Erklärung der Syntax „df[&#column&#] = expression' in Pandas

Jan 10, 2025 am 09:13 AM

Explanation of the syntax `df[

Detaillierte Erläuterung der

Pandas df['column'] = expression-Syntax: Wird zum Erstellen, Ändern oder Zuweisen von Spalten in Pandas DataFrame (df) verwendet. Lassen Sie uns es Schritt für Schritt aufschlüsseln, von einfach bis fortgeschritten.


Grundlagen

1. Neue Spalte erstellen

  • Wenn eine Spalte im DataFrame nicht vorhanden ist, wird durch Zuweisen eines Werts zu df['column'] eine neue Spalte erstellt.

  • Beispiel:

      import pandas as pd
      df = pd.DataFrame({'A': [1, 2, 3]})
      print(df)
      # 输出:
      #    A
      # 0  1
      # 1  2
      # 2  3
    
      # 创建一个新列 'B',所有值都设置为 0
      df['B'] = 0
      print(df)
      # 输出:
      #    A  B
      # 0  1  0
      # 1  2  0
      # 2  3  0
    Nach dem Login kopieren

2. Vorhandene Spalten ändern

  • Wenn die Spalte bereits vorhanden ist, ersetzt die Zuweisung ihren Inhalt.

  • Beispiel:

      df['B'] = [4, 5, 6]  # 替换列 'B' 中的值
      print(df)
      # 输出:
      #    A  B
      # 0  1  4
      # 1  2  5
      # 2  3  6
    Nach dem Login kopieren

Mittelstufe

3. Ausdrucksbasierte Zuordnung

  • Kann Spalten basierend auf Berechnungen oder Transformationen Werte zuweisen.

  • Beispiel:

      df['C'] = df['A'] + df['B']  # 创建列 'C' 为 'A' 和 'B' 的和
      print(df)
      # 输出:
      #    A  B   C
      # 0  1  4   5
      # 1  2  5   7
      # 2  3  6   9
    Nach dem Login kopieren

4. Bedingte Zuweisung verwenden

  • Sie können die boolesche Indizierung von Pandas für die bedingte Zuweisung verwenden.

  • Beispiel:

      df['D'] = df['A'].apply(lambda x: 'Even' if x % 2 == 0 else 'Odd')
      print(df)
      # 输出:
      #    A  B   C     D
      # 0  1  4   5   Odd
      # 1  2  5   7  Even
      # 2  3  6   9   Odd
    Nach dem Login kopieren

5. Verwenden Sie mehrere Spalten in Ausdrücken

  • Für komplexere Berechnungen können Sie mehrere Spalten in einem Ausdruck verwenden.

  • Beispiel:

      df['E'] = (df['A'] + df['B']) * df['C']
      print(df)
      # 输出:
      #    A  B   C     D    E
      # 0  1  4   5   Odd   25
      # 1  2  5   7  Even   49
      # 2  3  6   9   Odd   81
    Nach dem Login kopieren

Erweitertes Kapitel

6. Vektorisierungsvorgang

  • Numerische Zuweisungen können Vektorisierungsoperationen verwenden, um die Leistung zu verbessern.

  • Beispiel:

      df['F'] = df['A'] ** 2 + df['B'] ** 2  # 快速向量化计算
      print(df)
      # 输出:
      #    A  B   C     D    E   F
      # 0  1  4   5   Odd   25  17
      # 1  2  5   7  Even   49  29
      # 2  3  6   9   Odd   81  45
    Nach dem Login kopieren

7. Verwenden Sie np.where für bedingte logische Zuweisung

  • Sie können NumPy für die bedingte Zuweisung verwenden.

  • Beispiel:

      import numpy as np
      df['G'] = np.where(df['A'] > 2, 'High', 'Low')
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G
      # 0  1  4   5   Odd   25  17   Low
      # 1  2  5   7  Even   49  29   Low
      # 2  3  6   9   Odd   81  45  High
    Nach dem Login kopieren

8. Verwenden Sie externe Funktionen, um Werte zuzuweisen

  • Weisen Sie Spalten Werte zu, basierend auf einer benutzerdefinierten Funktion, die auf die Zeile oder Spalte angewendet wird.

  • Beispiel:

      def custom_function(row):
          return row['A'] * row['B']
    
      df['H'] = df.apply(custom_function, axis=1)
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H
      # 0  1  4   5   Odd   25  17   Low   4
      # 1  2  5   7  Even   49  29   Low  10
      # 2  3  6   9   Odd   81  45  High  18
    Nach dem Login kopieren

9. Kettenbetrieb

  • Mehrere Vorgänge können miteinander verkettet werden, um den Code prägnanter zu gestalten.

  • Beispiel:

      df['I'] = df['A'].add(df['B']).mul(df['C'])
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H    I
      # 0  1  4   5   Odd   25  17   Low   4   25
      # 1  2  5   7  Even   49  29   Low  10   49
      # 2  3  6   9   Odd   81  45  High  18   81
    Nach dem Login kopieren

10. Weisen Sie mehrere Spalten gleichzeitig zu

  • Verwenden Sie assign(), um mehrere Spalten in einem Aufruf zu erstellen oder zu ändern.

  • Beispiel:

      df = df.assign(
          J=df['A'] + df['B'],
          K=lambda x: x['J'] * 2
      )
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H    I   J   K
      # 0  1  4   5   Odd   25  17   Low   4   25   5  10
      # 1  2  5   7  Even   49  29   Low  10   49   7  14
      # 2  3  6   9   Odd   81  45  High  18   81   9  18
    Nach dem Login kopieren

Experten

11. Dynamische Spaltenzuweisung

  • Erstellen Sie Spaltennamen dynamisch basierend auf externen Eingaben.

  • Beispiel:

      columns_to_add = ['L', 'M']
      for col in columns_to_add:
          df[col] = df['A'] + df['B']
      print(df)
    Nach dem Login kopieren

12. Externe Datenzuweisung verwenden

  • Weisen Sie Spalten Werte basierend auf einem externen DataFrame oder Wörterbuch zu.

  • Beispiel:

      mapping = {1: 'Low', 2: 'Medium', 3: 'High'}
      df['N'] = df['A'].map(mapping)
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H    I   J   K      N
      # 0  1  4   5   Odd   25  17   Low   4   25   5  10    Low
      # 1  2  5   7  Even   49  29   Low  10   49   7  14  Medium
      # 2  3  6   9   Odd   81  45  High  18   81   9  18   High
    Nach dem Login kopieren

13. Leistungsoptimierung:

  • Beim Zuweisen von Werten bietet die Verwendung der integrierten Funktionen von Pandas (apply, vektorisierte Operationen) eine bessere Leistung als Python-Schleifen.

Zusammenfassung

df['column'] = expression Die Syntax ist das Kernmerkmal von Pandas und hat ein breites Anwendungsspektrum. Es erlaubt:

  • Spalten in einem DataFrame hinzufügen, ändern und manipulieren.
  • Führen Sie komplexe Berechnungen durch, einschließlich bedingungsbasierter Logik und mehrspaltiger Transformationen.
  • Verketten Sie Vorgänge und generieren Sie dynamisch neue Spalten.

Dies macht Pandas zu einer leistungsstarken Datenmanipulations- und Analysebibliothek.

Das obige ist der detaillierte Inhalt vonErklärung der Syntax „df[&#column&#] = expression' in Pandas. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1668
14
PHP-Tutorial
1273
29
C#-Tutorial
1256
24
Python: Spiele, GUIs und mehr Python: Spiele, GUIs und mehr Apr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

See all articles