CocoCaptions in PyTorch (1)
Kauf mir einen Kaffee☕
*Memos:
- Mein Beitrag erklärt CocoDetection() mit train2014 mit captions_train2014.json, Instanzen_train2014.json und person_keypoints_train2014.json, val2014 mit captions_val2014.json, Instanzen_val2014.json und person_keypoints_val2014.json und test2017 mit image_info_test2014.json, image_info_test2015.json und image_info_test-dev2015.json.
- Mein Beitrag erklärt CocoDetection() mit train2017 mit captions_train2017.json, Instanzen_train2017.json und person_keypoints_train2017.json, val2017 mit captions_val2017.json, Instanzen_val2017.json und person_keypoints_val2017.json und test2017 mit image_info_test2017.json und image_info_test-dev2017.json.
- Mein Beitrag erklärt CocoDetection() mit train2017 mit stuff_train2017.json, val2017 mit stuff_val2017.json, stuff_train2017_pixelmaps mit stuff_train2017.json, stuff_val2017_pixelmaps mit stuff_val2017.json, panoptic_train2017 mit panoptic_train2017.json, panoptic_val2017 mit panoptic_val2017.json und unlabeled2017 mit image_info_unlabeled2017.json.
- Mein Beitrag erklärt MS COCO.
CocoCaptions() kann den MS COCO-Datensatz wie unten gezeigt verwenden. *Dies gilt für train2014 mit captions_train2014.json, Instanzen_train2014.json und person_keypoints_train2014.json, val2014 mit captions_val2014.json, Instanzen_val2014.json und person_keypoints_val2014.json und test2017 mit image_info_test2014.json. image_info_test2015.json und image_info_test-dev2015.json:
*Memos:
- Das 1. Argument ist root(Required-Type:str oder pathlib.Path):
*Memos:
- Es ist der Weg zu den Bildern.
- Ein absoluter oder relativer Pfad ist möglich.
- Das 2. Argument ist annFile(Required-Type:str oder pathlib.Path):
*Memos:
- Es ist der Pfad zu den Anmerkungen.
- Ein absoluter oder relativer Pfad ist möglich.
- Das dritte Argument ist transform(Optional-Default:None-Type:callable).
- Das 4. Argument ist target_transform(Optional-Default:None-Type:callable).
- Das 5. Argument ist transforms(Optional-Default:None-Type:callable).
from torchvision.datasets import CocoCaptions cap_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json" ) cap_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json", transform=None, target_transform=None, transforms=None ) ins_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/instances_train2014.json" ) pk_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json" ) len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data) # (82783, 82783, 82783) cap_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/captions_val2014.json" ) ins_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/instances_val2014.json" ) pk_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json" ) len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data) # (40504, 40504, 40504) test2014_data = CocoCaptions( root="data/coco/imgs/test2014", annFile="data/coco/anns/test2014/image_info_test2014.json" ) test2015_data = CocoCaptions( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/image_info_test2015.json" ) testdev2015_data = CocoCaptions( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/image_info_test-dev2015.json" ) len(test2014_data), len(test2015_data), len(testdev2015_data) # (40775, 81434, 20288) cap_train2014_data # Dataset CocoCaptions # Number of datapoints: 82783 # Root location: data/coco/imgs/train2014 cap_train2014_data.root # 'data/coco/imgs/train2014' print(cap_train2014_data.transform) # None print(cap_train2014_data.target_transform) # None print(cap_train2014_data.transforms) # None cap_train2014_data.coco # <pycocotools.coco.COCO at 0x759028ee1d00> cap_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, # ['three zeebras standing in a grassy field walking', # 'Three zebras are standing in an open field.', # 'Three zebra are walking through the grass of a field.', # 'Three zebras standing on a grassy dirt field.', # 'Three zebras grazing in green grass field area.']) cap_train2014_data[179] # (<PIL.Image.Image image mode=RGB size=480x640>, # ['a young guy walking in a forrest holding an object in his hand', # 'A partially black and white photo of a man throwing ... the woods.', # 'A disc golfer releases a throw from a dirt tee ... wooded course.', # 'The person is in the clearing of a wooded area. ', # 'a person throwing a frisbee at many trees ']) cap_train2014_data[194] # (<PIL.Image.Image image mode=RGB size=428x640>, # ['A person on a court with a tennis racket.', # 'A man that is holding a racquet standing in the grass.', # 'A tennis player hits the ball during a match.', # 'The tennis player is poised to serve a ball.', # 'Man in white playing tennis on a court.']) ins_train2014_data[26] # Error ins_train2014_data[179] # Error ins_train2014_data[194] # Error pk_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, []) pk_train2014_data[179] # Error pk_train2014_data[194] # Error cap_val2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, # ['a close up of a child next to a cake with balloons', # 'A baby sitting in front of a cake wearing a tie.', # 'The young boy is dressed in a tie that matches his cake. ', # 'A child eating a birthday cake near some balloons.', # 'A baby eating a cake with a tie around ... the background.']) cap_val2014_data[179] # (<PIL.Image.Image image mode=RGB size=500x302>, # ['Many small children are posing together in the ... white photo. ', # 'A vintage school picture of grade school aged children.', # 'A black and white photo of a group of kids.', # 'A group of children standing next to each other.', # 'A group of children standing and sitting beside each other. ']) cap_val2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x427>, # ['A man hitting a tennis ball with a racquet.', # 'champion tennis player swats at the ball hoping to win', # 'A man is hitting his tennis ball with a recket on the court.', # 'a tennis player on a court with a racket', # 'A professional tennis player hits a ball as fans watch.']) ins_val2014_data[26] # Error ins_val2014_data[179] # Error ins_val2014_data[194] # Error pk_val2014_data[26] # Error pk_val2014_data[179] # Error pk_val2014_data[194] # Error test2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x640>, []) test2014_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x360>, []) test2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x426>, []) test2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, []) testdev2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, []) testdev2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, []) testdev2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import numpy as np from pycocotools import mask def show_images(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) x_crd = 0.02 for i, axis in zip(ims, axes.ravel()): if data[i][1]: im, anns = data[i] axis.imshow(X=im) y_crd = 0.0 for j, ann in enumerate(iterable=anns): text_list = ann.split() if len(text_list) > 9: text = " ".join(text_list[0:10]) + " ..." else: text = " ".join(text_list) plt.figtext(x=x_crd, y=y_crd, fontsize=10, s=f'{j} : {text}') y_crd -= 0.06 x_crd += 0.325 if i == 2 and file == "val2017": x_crd += 0.06 elif not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (26, 179, 194) show_images(data=cap_train2014_data, ims=ims, main_title="cap_train2014_data") show_images(data=cap_val2014_data, ims=ims, main_title="cap_val2014_data") show_images(data=test2014_data, ims=ims, main_title="test2014_data") show_images(data=test2015_data, ims=ims, main_title="test2015_data") show_images(data=testdev2015_data, ims=ims, main_title="testdev2015_data")
Das obige ist der detaillierte Inhalt vonCocoCaptions in PyTorch (1). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
