Heim Backend-Entwicklung Python-Tutorial RAG-Workflow verstehen: Retrieval-Augmented Generation in Python

RAG-Workflow verstehen: Retrieval-Augmented Generation in Python

Jan 03, 2025 am 05:32 AM

Understanding RAG Workflow: Retrieval-Augmented Generation in Python

Der Retrieval-Augmented Generation (RAG)-Workflow ist ein fortschrittlicher Ansatz in der Verarbeitung natürlicher Sprache (NLP), der Retrieval- und Generierungsfunktionen kombiniert. Dies ist besonders nützlich für Aufgaben, bei denen das Modell Antworten sowohl auf der Grundlage seiner Trainingsdaten als auch externer Wissensquellen generieren muss. In diesem Artikel wird erläutert, wie RAG funktioniert, welche Anwendungsfälle es gibt und wie man es in Python implementiert.


Was ist Retrieval-Augmented Generation (RAG)?

RAG ist ein hybrider Ansatz, der zwei Komponenten vereint:

  1. Retriever: Ruft relevante Dokumente oder Informationen aus einer externen Wissensdatenbank ab.
  2. Generator: Erzeugt kohärente und kontextrelevante Antworten basierend auf den abgerufenen Dokumenten.

Durch die Kombination dieser Komponenten ermöglichen RAG-Workflows Modellen, im Vergleich zu eigenständigen generativen Modellen genauere, kontextbewusstere und aktuellere Ausgaben zu generieren.


So funktioniert der RAG-Workflow

  1. Eingabeabfrage: Der Benutzer stellt eine Abfrage, z. B. eine Frage oder eine Eingabeaufforderung.
  2. Dokumentenabruf: Der Retriever sucht nach relevanten Dokumenten in einer externen Datenbank, wie etwa Elasticsearch, einer Vektordatenbank oder sogar einem einfachen Textkorpus.
  3. Kontextuelle Einbettung: Abgerufene Dokumente werden zusammen mit der ursprünglichen Abfrage an den Generator übergeben, um zusätzlichen Kontext bereitzustellen.
  4. Antwortgenerierung: Der Generator verwendet die Abfrage und die abgerufenen Dokumente, um eine endgültige Antwort zu erstellen.

Wichtige Anwendungsfälle von RAG

  1. Fragenbeantwortung: Bereitstellung präziser Antworten unter Verwendung interner und externer Wissensdatenbanken.
  2. Chatbots: Verbesserung von Konversations-KI-Systemen mit aktuellem oder domänenspezifischem Wissen.
  3. Kundensupport: Lösen von Fragen durch Abrufen und Generieren von Antworten aus einem großen Korpus von FAQs oder Handbüchern.
  4. Rechercheunterstützung:Zusammenfassen und Beantworten von Fragen basierend auf wissenschaftlichen Arbeiten oder anderen Forschungsmaterialien.

RAG in Python implementieren

Hier ist eine Schritt-für-Schritt-Implementierung eines grundlegenden RAG-Workflows mit Python:

  1. Notwendige Bibliotheken installieren:
   pip install transformers langchain faiss-cpu sentence-transformers
Nach dem Login kopieren
  1. Retriever einrichten: Nutzen Sie für eine effiziente Recherche eine Vektordatenbank wie FAISS.
   from sentence_transformers import SentenceTransformer
   import faiss

   # Initialize embedding model
   model = SentenceTransformer('all-MiniLM-L6-v2')

   # Example documents
   documents = [
       "Python is a versatile programming language.",
       "Transformers are powerful models for NLP tasks.",
       "FAISS is used for vector similarity search."
   ]

   # Generate embeddings
   doc_embeddings = model.encode(documents)

   # Create FAISS index
   dimension = doc_embeddings.shape[1]
   index = faiss.IndexFlatL2(dimension)
   index.add(doc_embeddings)
Nach dem Login kopieren
  1. Generator definieren: Verwenden Sie ein vorab trainiertes Sprachmodell von Hugging Face.
   from transformers import pipeline

   # Initialize text generation pipeline
   generator = pipeline('text-generation', model='gpt2')
Nach dem Login kopieren
  1. Retriever und Generator integrieren: Kombinieren Sie Retriever und Generator zum RAG-Workflow.
   def rag_pipeline(query):
       # Retrieve similar documents
       query_embedding = model.encode([query])
       distances, indices = index.search(query_embedding, k=2)
       retrieved_docs = [documents[i] for i in indices[0]]

       # Generate response using retrieved documents
       context = "\n".join(retrieved_docs)
       prompt = f"Context: {context}\nQuery: {query}\nAnswer:"
       response = generator(prompt, max_length=50, num_return_sequences=1)

       return response[0]['generated_text']

   # Example query
   query = "What is FAISS?"
   print(rag_pipeline(query))
Nach dem Login kopieren
  1. Testen Sie den Workflow: Führen Sie das Skript aus und stellen Sie verschiedene Abfragen bereit, um die Leistung des Systems zu testen.

Vorteile des RAG-Workflows

  1. Verbesserte Genauigkeit:Nutzt externes Wissen, um kontextbezogene genaue Antworten zu generieren.
  2. Flexibilität: Passt sich durch Änderung der Wissensdatenbank an verschiedene Domänen an.
  3. Skalierbarkeit: Funktioniert effizient mit großen Datensätzen unter Verwendung skalierbarer Abrufmechanismen wie FAISS.

Abschluss

Der Retrieval-Augmented Generation (RAG)-Workflow stellt einen bedeutenden Fortschritt im NLP dar, indem er Retrieval und Generierung integriert. Es ist äußerst vielseitig und findet in Bereichen von der Kundenbetreuung bis zur Forschung Anwendung. Durch die oben gezeigte Implementierung von RAG in Python können Sie leistungsstarke, kontextbewusste KI-Systeme erstellen, die auf Ihre spezifischen Anforderungen zugeschnitten sind.


Experimentieren Sie gerne mit verschiedenen Abrufsystemen oder optimieren Sie den Generator, um ihn besser an Ihre Anwendungen anzupassen. Die Möglichkeiten mit RAG-Workflows sind riesig!

Das obige ist der detaillierte Inhalt vonRAG-Workflow verstehen: Retrieval-Augmented Generation in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1662
14
PHP-Tutorial
1261
29
C#-Tutorial
1234
24
Python vs. C: Anwendungen und Anwendungsfälle verglichen Python vs. C: Anwendungen und Anwendungsfälle verglichen Apr 12, 2025 am 12:01 AM

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Python: Spiele, GUIs und mehr Python: Spiele, GUIs und mehr Apr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Der 2-stündige Python-Plan: ein realistischer Ansatz Der 2-stündige Python-Plan: ein realistischer Ansatz Apr 11, 2025 am 12:04 AM

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Wie viel Python können Sie in 2 Stunden lernen? Wie viel Python können Sie in 2 Stunden lernen? Apr 09, 2025 pm 04:33 PM

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python: Erforschen der primären Anwendungen Python: Erforschen der primären Anwendungen Apr 10, 2025 am 09:41 AM

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

See all articles