Inhaltsverzeichnis
Pivotieren eines DataFrame
Einführung
Grundlegendes Pivotieren
Erweitertes Pivotieren
Andere Methoden
Beispiele
Abflachung
Zusätzliche Hinweise
Heim Backend-Entwicklung Python-Tutorial Wie kann ich DataFrames in Pandas effizient Pivotieren?

Wie kann ich DataFrames in Pandas effizient Pivotieren?

Dec 25, 2024 pm 01:29 PM

How Can I Efficiently Pivot DataFrames in Pandas?

Pivotieren eines DataFrame

Einführung

Pivotieren, auch Transponieren genannt, ist ein häufiger Vorgang bei der Datentransformation, bei dem Zeilen und Spalten vertauscht werden. Dies kann für Aufgaben wie das Umformen von Daten in ein geeigneteres Format oder das Erstellen von Berichten, die Daten über mehrere Dimensionen hinweg zusammenfassen, nützlich sein. In Python bietet Pandas mehrere Methoden zum Pivotieren eines DataFrames, jede mit ihren eigenen Stärken und Einschränkungen.

Grundlegendes Pivotieren

Für das grundlegende Pivotieren können Sie die folgenden Methoden verwenden:

pandas.pivot_table: Diese Methode bietet eine flexible Schnittstelle zum Pivotieren von Daten durch Angabe der zu verwendenden Spalten Zeilen, Spalten und Werte. Unterstützt verschiedene Aggregationsfunktionen wie Mittelwert, Summe, Anzahl usw.

pandas.DataFrame.groupby pandas.unstack: Gruppieren Sie die Daten mit Groupby nach den gewünschten Spalten und entstapeln Sie dann den resultierenden MultiIndex mit Entstapeln, um den geschwenkten DataFrame zu erstellen.

Erweitertes Pivotieren

Für komplexeres Pivotieren Für Operationen können Sie die folgenden Methoden verwenden:

pandas.DataFrame.set_index pandas.unstack: Ähnlich wie Groupby, aber effizienter, wenn Sie auf einem eindeutigen Satz von Zeilen und Spalten schwenken.

pandas.DataFrame.pivot: Eine prägnantere Version von Pivot_table, jedoch mit eingeschränkter Funktionalität Funktionalität.

Andere Methoden

pandas.crossstab: Nützlich zum Erstellen einer Kontingenztabelle (Kreuztabelle), einer Art Pivot, der Daten über zwei kategoriale Variablen hinweg aggregiert.

pandas.factorize numpy.bincount: Eine fortgeschrittenere Technik, die kann für bestimmte Vorgänge schneller sein. Verwendet Faktorisierung, um kategoriale Werte in eindeutige Ganzzahlen umzuwandeln, und verwendet dann Bincount, um die Vorkommen zu zählen.

pandas.get_dummies pandas.DataFrame.dot: Eine kreative Möglichkeit, Kreuztabellen mithilfe von Dummy-Variablen durchzuführen .

Beispiele

Hier sind einige Beispiele für deren Verwendung Methoden:

# Import pandas
import pandas as pd

# Create a sample DataFrame
df = pd.DataFrame({
    "key": ["a", "b", "c", "a", "b"],
    "row": [1, 2, 3, 4, 5],
    "col": ["col1", "col2", "col3", "col1", "col2"],
    "val": [10, 20, 30, 40, 50]
})

# Pivot using pivot_table
pivoted_df = pd.pivot_table(
    df, index="row", columns="col", values="val", aggfunc='mean', fill_value=0
)

# Pivot using groupby and unstack
pivoted_df = df.groupby(['row', 'col'])['val'].mean().unstack(fill_value=0)
Nach dem Login kopieren

Abflachung

Um den Multi-Index des geschwenkten DataFrames abzuflachen, können Sie je nach Spaltentyp unterschiedliche Ansätze verwenden:

If Spalten sind Zeichenfolgen:

pivoted_df.columns = pivoted_df.columns.map('|'.join)
Nach dem Login kopieren

Wenn Spalten sind Tupel:

pivoted_df.columns = pivoted_df.columns.map('{0[0]}|{0[1]}'.format)
Nach dem Login kopieren

Zusätzliche Hinweise

  • Stellen Sie bei der Auswahl von Spalten für die Pivotierung sicher, dass sie kategorisch sind oder eine begrenzte Anzahl eindeutiger Werte haben, um zu vermeiden, dass ein breiter DataFrame erstellt wird viele Spalten.
  • Achten Sie auf die Füllwerte, wenn Sie Aggregationsfunktionen verwenden, um fehlende Werte zu verarbeiten Daten.
  • Erwägen Sie die Verwendung leistungssteigernder Techniken wie set_index und faktorisieren für große Datensätze.
  • Erkunden Sie andere Optionen wie pandas.wide_to_long, wenn Sie Daten vom Breit- ins Langformat transponieren müssen.

Das obige ist der detaillierte Inhalt vonWie kann ich DataFrames in Pandas effizient Pivotieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1670
14
PHP-Tutorial
1274
29
C#-Tutorial
1256
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für die Webentwicklung: Schlüsselanwendungen Python für die Webentwicklung: Schlüsselanwendungen Apr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

See all articles