


Warum führt der Vergleich von Floats mit Doppelliteralen in C zu unerwarteten Ergebnissen?
Gleitkomma-Vergleichsrätsel
Bedenken Sie den folgenden C-Code:
int main() { float a = 0.7; float b = 0.5; if (a < 0.7) { if (b < 0.5) printf("2 are right"); else printf("1 is right"); } else printf("0 are right"); }
Sie würden intuitiv erwarten, dass die Ausgabe so ist sei „0 sind richtig.“ Das überraschende Ergebnis ist jedoch: „1 ist richtig.“ Warum passiert das?
Die Fallstricke des Gleitkomma-Vergleichs
Der Schlüssel liegt in den Unterschieden zwischen Gleitkomma- und Zahlen mit doppelter Genauigkeit in C. Im Code werden die Variablen a und b als Floats deklariert, bei denen es sich um 32-Bit-Gleitkommazahlen handelt. Allerdings beinhalten beide Vergleiche (a < 0,7 und b < 0,5) Doubles, da die Literale 0,7 und 0,5 als Doubles behandelt werden.
Während des Vergleichs werden die Float-Variablen zu Doubles heraufgestuft, was a ermöglicht höhere Reichweite und Präzision. Aufgrund der begrenzten Präzision von Gleitkommazahlen kann diese Konvertierung jedoch zu geringfügigen Artefakten führen. In diesem Fall entspricht 0,7 als Float nicht genau 0,7 als Double.
Konkret wird 0,7 als Float im IEEE 754-Standard als 0x3f000000 dargestellt. Bei einer Beförderung zum Double ist dieser Wert keine exakte Darstellung von 0,7. Stattdessen wird es etwas größer, etwa 0x3f00000000000000 (ungefähr 0,7000000000000001).
Die Ursache des unerwarteten Ergebnisses
Als Ergebnis dieser Aktion wird die Bedingung a < 0,7 wird wahr, weil die Doppeldarstellung von a geringfügig kleiner als 0,7 ist. Anschließend erfolgt der zweite Vergleich b < 0,5 wird als falsch ausgewertet, da b (exakt als Double dargestellt) gleich 0,5 ist. Daher gibt der Code „1 ist richtig“ aus.
Lösungen
Um dieses Problem zu beheben, können Sie entweder:
- Ändern Variablen a und b, die als Doubles deklariert werden sollen, oder
- Ändern Sie die Literale 0,7 und 0,5 so, dass sie als angegeben werden schweben
Das obige ist der detaillierte Inhalt vonWarum führt der Vergleich von Floats mit Doppelliteralen in C zu unerwarteten Ergebnissen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Die Geschichte und Entwicklung von C# und C sind einzigartig, und auch die Zukunftsaussichten sind unterschiedlich. 1.C wurde 1983 von Bjarnestrustrup erfunden, um eine objektorientierte Programmierung in die C-Sprache einzuführen. Sein Evolutionsprozess umfasst mehrere Standardisierungen, z. B. C 11 Einführung von Auto-Keywords und Lambda-Ausdrücken, C 20 Einführung von Konzepten und Coroutinen und sich in Zukunft auf Leistung und Programme auf Systemebene konzentrieren. 2.C# wurde von Microsoft im Jahr 2000 veröffentlicht. Durch die Kombination der Vorteile von C und Java konzentriert sich seine Entwicklung auf Einfachheit und Produktivität. Zum Beispiel führte C#2.0 Generics und C#5.0 ein, die eine asynchrone Programmierung eingeführt haben, die sich in Zukunft auf die Produktivität und das Cloud -Computing der Entwickler konzentrieren.

Es gibt signifikante Unterschiede in den Lernkurven von C# und C- und Entwicklererfahrung. 1) Die Lernkurve von C# ist relativ flach und für rasche Entwicklung und Anwendungen auf Unternehmensebene geeignet. 2) Die Lernkurve von C ist steil und für Steuerszenarien mit hoher Leistung und niedrigem Level geeignet.

C interagiert mit XML über Bibliotheken von Drittanbietern (wie Tinyxml, Pugixml, Xerces-C). 1) Verwenden Sie die Bibliothek, um XML-Dateien zu analysieren und in C-verarbeitbare Datenstrukturen umzuwandeln. 2) Konvertieren Sie beim Generieren von XML die C -Datenstruktur in das XML -Format. 3) In praktischen Anwendungen wird XML häufig für Konfigurationsdateien und Datenaustausch verwendet, um die Entwicklungseffizienz zu verbessern.

Die Anwendung der statischen Analyse in C umfasst hauptsächlich das Erkennen von Problemen mit Speicherverwaltung, das Überprüfen von Code -Logikfehlern und die Verbesserung der Codesicherheit. 1) Statische Analyse kann Probleme wie Speicherlecks, Doppelfreisetzungen und nicht initialisierte Zeiger identifizieren. 2) Es kann ungenutzte Variablen, tote Code und logische Widersprüche erkennen. 3) Statische Analysetools wie die Deckung können Pufferüberlauf, Ganzzahlüberlauf und unsichere API -Aufrufe zur Verbesserung der Codesicherheit erkennen.

Durch die Verwendung der Chrono -Bibliothek in C können Sie Zeit- und Zeitintervalle genauer steuern. Erkunden wir den Charme dieser Bibliothek. Die Chrono -Bibliothek von C ist Teil der Standardbibliothek, die eine moderne Möglichkeit bietet, mit Zeit- und Zeitintervallen umzugehen. Für Programmierer, die in der Zeit gelitten haben.H und CTime, ist Chrono zweifellos ein Segen. Es verbessert nicht nur die Lesbarkeit und Wartbarkeit des Codes, sondern bietet auch eine höhere Genauigkeit und Flexibilität. Beginnen wir mit den Grundlagen. Die Chrono -Bibliothek enthält hauptsächlich die folgenden Schlüsselkomponenten: std :: chrono :: system_clock: repräsentiert die Systemuhr, mit der die aktuelle Zeit erhalten wird. std :: chron

C hat immer noch wichtige Relevanz für die moderne Programmierung. 1) Hochleistungs- und direkte Hardware-Betriebsfunktionen machen es zur ersten Wahl in den Bereichen Spieleentwicklung, eingebettete Systeme und Hochleistungs-Computing. 2) Reiche Programmierparadigmen und moderne Funktionen wie Smart -Zeiger und Vorlagenprogrammierung verbessern seine Flexibilität und Effizienz. Obwohl die Lernkurve steil ist, machen sie im heutigen Programmierökosystem immer noch wichtig.

Die Zukunft von C wird sich auf parallele Computer, Sicherheit, Modularisierung und KI/maschinelles Lernen konzentrieren: 1) Paralleles Computer wird durch Merkmale wie Coroutinen verbessert. 2) Die Sicherheit wird durch strengere Mechanismen vom Typ Überprüfung und Speicherverwaltung verbessert. 3) Modulation vereinfacht die Codeorganisation und die Kompilierung. 4) KI und maschinelles Lernen fordern C dazu auf, sich an neue Bedürfnisse anzupassen, wie z. B. numerische Computer- und GPU -Programmierunterstützung.
