Backtest wie ein Profi mit einer Forex-API
Die dynamische Natur der Finanzmärkte erfordert die Nutzung zuverlässiger Daten zur Entwicklung und Validierung von Handelsstrategien. Für Händler und Analysten ist die effiziente Integration hochwertiger Daten in Backtesting-Umgebungen von entscheidender Bedeutung. TraderMade-APIs unterstützen diese Fachleute, indem sie präzise, detaillierte und umfassende Marktdaten bereitstellen.
Diese Analyse nutzt die Zeitreihen-API von TraderMade, um historische Daten zu erhalten, eine einfache Crossover-Strategie für den einfachen gleitenden Durchschnitt (SMA) auszuführen und ihre historische Leistung zu bewerten.
Über die SMA Crossover-Strategie
Die Simple Moving Average (SMA) Crossover-Strategie ist eine grundlegende technische Analysetechnik. Dabei werden zwei SMAs beobachtet: ein kurzfristiger SMA, der eine höhere Empfindlichkeit gegenüber Preisänderungen aufweist, und ein langfristiger SMA, der die Auswirkungen kurzfristiger Preisvolatilität abschwächt.
Ein Kaufsignal wird generiert, wenn der kurzfristige SMA den langfristigen SMA übertrifft, was auf einen möglichen Aufwärtstrend hinweist. Umgekehrt wird ein Verkaufssignal ausgelöst, wenn der kurzfristige SMA unter den langfristigen SMA fällt, was auf einen möglichen Abwärtstrend hindeutet.
Datenerfassung
Beginnen Sie mit der Installation des SDK von TraderMade wie folgt:
!pip install tradermade
Wir verwenden das installierte Software Development Kit (SDK), um stündliche Zeitreihendaten für Devisenpaare (Forex) abzurufen. Der nachfolgende Python-Code veranschaulicht den Erhalt von Daten für das Währungspaar EUR/USD.
import tradermade as tm import pandas as pd def fetch_forex_data(api_key, currency, start_date, end_date, interval="hourly", fields=["open", "high", "low", "close"]): # Set API key tm.set_rest_api_key(api_key) # Fetch the data data = tm.timeseries(currency=currency, start=start_date, end=end_date, interval=interval, fields=fields) # Convert data directly to DataFrame df = pd.DataFrame(data) # Convert 'date' column to datetime df["date"] = pd.to_datetime(df["date"]) # Set 'date' as the index df.set_index("date", inplace=True) return df # Adjust as needed api_key = "YOUR TRADERMADE API KEY" currency = "EURUSD" start_date = "2024-11-01-00:00" end_date = "2024-11-27-05:12" # Fetch the data and display the first few rows forex_data = fetch_forex_data(api_key, currency, start_date, end_date) forex_data = forex_data.rename(columns={"open": "Open", "high": "High", "low": "Low", "close": "Close"}) forex_data.head()
Datenerfassung und Vorverarbeitung für das Backtesting wurden erfolgreich abgeschlossen.
Implementierung und Backtesting einer einfachen SMA-Crossover-Strategie
In diesem Abschnitt wird die Backtesting-Python-Bibliothek verwendet, um unsere SMA-Crossover-Strategie zu definieren und zu bewerten. Für diejenigen, die mit der Backtesting-Bibliothek nicht vertraut sind: Sie gilt als herausragendes und robustes Python-Framework für das Backtesting technischer Handelsstrategien. Diese Strategien umfassen ein vielfältiges Spektrum, einschließlich SMA-Crossover, RSI-Crossover, Mean-Reversal-Strategien, Momentum-Strategien und andere.
import numpy as np from backtesting import Backtest, Strategy from backtesting.lib import crossover from backtesting.test import SMA # Define the SMA crossover trading strategy class SMACrossoverStrategy(Strategy): def init(self): # Calculate shorter-period SMAs for limited data price = self.data.Close self.short_sma = self.I(SMA, price, 20) # Short window self.long_sma = self.I(SMA, price, 60) # Long window def next(self): # Check for crossover signals if crossover(self.short_sma, self.long_sma): self.buy() elif crossover(self.long_sma, self.short_sma): self.sell() # Initialize and run the backtest bt = Backtest(forex_data, SMACrossoverStrategy, cash=10000, commission=.002) result = bt.run() # Display the backtest results print("Backtest Results:") print(result)
Die Strategie verwendet zwei gleitende Durchschnitte: einen 20-Perioden- und einen 60-Perioden-SMA. Eine Kauforder wird ausgeführt, wenn der kurzfristige SMA den langfristigen SMA überschreitet. Umgekehrt wird ein Verkaufsauftrag ausgelöst, wenn der kurzfristige SMA unter den langfristigen SMA fällt. Innerhalb eines 25-tägigen Handelszeitraums erzielte diese unkomplizierte Strategie bei sechs Trades einen Gewinn von 243 $.
Aktien- und SMA-Kurvenanalyse
Der nachfolgende Python-Code bewertet die Leistung der SMA-Crossover-Strategie. SMAs erleichtern die Visualisierung von Preistrends und identifizieren Kreuzungspunkte, die Kauf-/Verkaufssignale generieren. Die Aktienkurve dient als Leistungskennzahl und veranschaulicht die Auswirkung dieser Signale auf das Portfoliowachstum.
Durch die Integration beider Kurven können Händler die Korrelation zwischen Crossover-Ereignissen und Änderungen im Portfoliowert leicht beobachten und so wichtige Einblicke in die Wirksamkeit der SMA-Crossover-Strategie liefern.
Plotly wird verwendet, um die Aktien- und SMA-Kurven zu visualisieren, sodass Händler die Rentabilität ihrer Strategie effektiv bewerten können.
!pip install tradermade
Abschließende Bemerkungen
Erfolgreiches Backtesting erfordert genaue, hochfrequente Daten, und die APIs von TraderMade ermöglichen eine nahtlose Integration. Unabhängig von Ihrem Erfahrungsniveau – ob Sie ein Neuling sind, der verschiedene Strategien erforscht, oder ein erfahrener Analyst, der anspruchsvolle Modelle entwickelt – die Angebote des Unternehmens bieten die notwendigen Werkzeuge.
Sind Sie bereit, die APIs von TraderMade in Ihren Workflow zu integrieren? Beginnen Sie noch heute Ihre Reise und setzen Sie Ihre Konzepte in die Realität um.
Das obige ist der detaillierte Inhalt vonBacktest wie ein Profi mit einer Forex-API. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.
