Heim Backend-Entwicklung Python-Tutorial ChromaDB für den SQL Mind

ChromaDB für den SQL Mind

Dec 10, 2024 am 01:02 AM

ChromaDB for the SQL Mind

Hallo, Chroma DB ist eine Vektordatenbank, die für die Arbeit mit GenAI-Anwendungen nützlich ist. In diesem Artikel werde ich untersuchen, wie wir Abfragen auf Chroma DB ausführen können, indem ich mir ähnliche Beziehungen in MySQL anschaue.

Schema

Im Gegensatz zu SQL können Sie kein eigenes Schema definieren. In Chroma erhalten Sie feste Spalten mit jeweils eigenem Zweck:

import chromadb

#setiing up the client
client = chromadb.Client() 
collection = client.create_collection(name="name")

collection.add(
    documents = ["str1","str2","str3",...]
    ids = [1,2,3,....]
    metadatas=[{"chapter": "3", "verse": "16"},{"chapter":"3", "verse":"5"}, ..]           
    embeddings = [[1,2,3], [3,4,5], [5,6,7]]
)
Nach dem Login kopieren
Nach dem Login kopieren

IDs: Es handelt sich um eindeutige IDs. Beachten Sie, dass Sie sie selbst bereitstellen müssen, im Gegensatz zu SQL gibt es keine automatische Inkrementierung
Dokumente: Wird zum Einfügen der Textdaten verwendet, die zum Generieren der Einbettungen verwendet werden. Sie können den Text eingeben und die Einbettungen werden automatisch erstellt. Oder Sie können Einbettungen einfach direkt bereitstellen und den Text an anderer Stelle speichern.
Einbettungen: Sie sind meiner Meinung nach der wichtigste Teil der Datenbank, da sie zur Durchführung der Ähnlichkeitssuche verwendet werden.
Metadaten: Dies wird verwendet, um alle zusätzlichen Daten zu verknüpfen, die Sie möglicherweise für zusätzlichen Kontext zu Ihrer Datenbank hinzufügen möchten.

Da nun die Grundlagen einer Sammlung klar sind, können wir mit den CRUD-Operationen fortfahren und sehen, wie wir die Datenbank abfragen können.

CRUD-Operationen

Hinweis: Sammlungen sind wie Tabellen in Chroma

Um eine Sammlung zu erstellen, können wir create_collection() verwenden und unsere Vorgänge nach Bedarf ausführen. Wenn die Sammlung jedoch bereits erstellt wurde und wir sie erneut aktualisieren müssen, müssen wir get_collection() verwenden, sonst erhalten wir eine Fehlermeldung.

Create Table tablename 
Nach dem Login kopieren
Nach dem Login kopieren
#Create a collection
collection = client.create_collection(name="name")

#If a collection is already made and you need to use it again the use
collection = client.get_collection(name="name")
Nach dem Login kopieren
Nach dem Login kopieren
Insert into tablename
Values(... , ..., ...)
Nach dem Login kopieren
Nach dem Login kopieren
collection.add(
    ids = [1]
    documents = ["some text"]
    metadatas = [{"key":"value"}]
    embeddings = [[1,2,3]]
)
Nach dem Login kopieren
Nach dem Login kopieren

Um die eingefügten Daten zu aktualisieren oder die Daten zu löschen, können wir die folgenden Befehle verwenden

collection.update(
    ids = [2]
    documents = ["some text"]
    metadatas = [{"key":"value"}]
    embeddings = [[1,2,3]]            
)

# If the id does not exist update will do nothing. to add data if id does not exist use
collection.upsert(
    ids = [2]
    documents = ["some text"]
    metadatas = [{"key":"value"}]
    embeddings = [[1,2,3]]            
)

# To delete data use delete and refrence the document or id or the feild
collection.delete(
    documents = ["some text"]         
)

# Or you can delete from a bunch of ids using where that will apply filter on metadata
collection.delete(
    ids=["id1", "id2", "id3",...],
    where={"chapter": "20"}
)
Nach dem Login kopieren
Nach dem Login kopieren

Abfragen

Jetzt schauen wir uns an, wie bestimmte Abfragen aussehen

Select * from tablename

Select * from tablename limit value

Select Documents, Metadata from tablename
Nach dem Login kopieren
Nach dem Login kopieren
collection.get()

collection.get(limit = val)

collection.get(include = ["documents","metadata"])
Nach dem Login kopieren

Während get() dazu dient, eine große Menge an Tabellen für komplexere Abfragen abzurufen, müssen Sie die Abfragemethode verwenden

Select A,B from table
limit val
Nach dem Login kopieren
collection.query(
    n_results = val #limit
    includes = [A,B] 
)
Nach dem Login kopieren

Jetzt haben wir drei Möglichkeiten, die Daten zu filtern: Ähnlichkeitssuche (wofür Vektordatenbanken hauptsächlich verwendet werden), Metadatenfilter und Dokumentfilter

Ähnlichkeitssuche

Wir können basierend auf Text oder Einbettungen suchen und die ähnlichsten Ergebnisse erhalten

collection.query(query_texts=["string"])

collection.query(query_embeddings=[[1,2,3]])
Nach dem Login kopieren

In ChromaDB werden die Parameter where und where_document verwendet, um Ergebnisse während einer Abfrage zu zu filtern. Mit diesen Filtern können Sie Ihre Ähnlichkeitssuche basierend auf Metadaten oder bestimmten Dokumentinhalten verfeinern.

Nach Metadaten filtern

Mit dem Where-Parameter können Sie Dokumente basierend auf den zugehörigen Metadaten filtern. Metadaten sind normalerweise ein Wörterbuch von Schlüssel-Wert-Paaren, die Sie beim Einfügen des Dokuments angeben.

Dokumente nach Metadaten wie Kategorie, Autor oder Datum filtern.

import chromadb

#setiing up the client
client = chromadb.Client() 
collection = client.create_collection(name="name")

collection.add(
    documents = ["str1","str2","str3",...]
    ids = [1,2,3,....]
    metadatas=[{"chapter": "3", "verse": "16"},{"chapter":"3", "verse":"5"}, ..]           
    embeddings = [[1,2,3], [3,4,5], [5,6,7]]
)
Nach dem Login kopieren
Nach dem Login kopieren
Create Table tablename 
Nach dem Login kopieren
Nach dem Login kopieren

Nach Dokumentinhalt filtern

Der Parameter where_document ermöglicht das Filtern direkt basierend auf dem Inhalt von Dokumenten.

Nur ​​Dokumente abrufen, die bestimmte Schlüsselwörter enthalten.

#Create a collection
collection = client.create_collection(name="name")

#If a collection is already made and you need to use it again the use
collection = client.get_collection(name="name")
Nach dem Login kopieren
Nach dem Login kopieren

Wichtige Hinweise:

  • Verwenden Sie Operatoren wie $contains, $startsWith oder $endsWith.
    • $contains: Dokumente abgleichen, die eine Teilzeichenfolge enthalten.
    • $startsWith: Dokumente abgleichen, die mit einer Teilzeichenfolge beginnen.
    • $endsWith: Dokumente abgleichen, die mit einer Teilzeichenfolge enden.
  • Zum Beispiel:

    Insert into tablename
    Values(... , ..., ...)
    
    Nach dem Login kopieren
    Nach dem Login kopieren

Häufige Anwendungsfälle:

Wir können alle drei Filter folgendermaßen kombinieren:

  1. Suche innerhalb einer bestimmten Kategorie:

    collection.add(
        ids = [1]
        documents = ["some text"]
        metadatas = [{"key":"value"}]
        embeddings = [[1,2,3]]
    )
    
    Nach dem Login kopieren
    Nach dem Login kopieren
  2. Dokumente suchen, die einen bestimmten Begriff enthalten:

    collection.update(
        ids = [2]
        documents = ["some text"]
        metadatas = [{"key":"value"}]
        embeddings = [[1,2,3]]            
    )
    
    # If the id does not exist update will do nothing. to add data if id does not exist use
    collection.upsert(
        ids = [2]
        documents = ["some text"]
        metadatas = [{"key":"value"}]
        embeddings = [[1,2,3]]            
    )
    
    # To delete data use delete and refrence the document or id or the feild
    collection.delete(
        documents = ["some text"]         
    )
    
    # Or you can delete from a bunch of ids using where that will apply filter on metadata
    collection.delete(
        ids=["id1", "id2", "id3",...],
        where={"chapter": "20"}
    )
    
    Nach dem Login kopieren
    Nach dem Login kopieren
  3. Metadaten- und Dokumentinhaltsfilter kombinieren:

    Select * from tablename
    
    Select * from tablename limit value
    
    Select Documents, Metadata from tablename
    
    Nach dem Login kopieren
    Nach dem Login kopieren

Diese Filter verbessern die Präzision Ihrer Ähnlichkeitssuchen und machen ChromaDB zu einem leistungsstarken Tool für die gezielte Suche nach Dokumenten.

Abschluss

Ich habe diesen Artikel geschrieben, weil ich das Gefühl hatte, dass das Dokument zu wünschen übrig lässt, wenn ich versuche, mein eigenes Programm zu erstellen. Ich hoffe, das hilft!

Vielen Dank fürs Lesen. Wenn Ihnen der Artikel gefallen hat, liken und teilen Sie ihn bitte. Auch wenn Sie neu in der Softwarearchitektur sind und mehr wissen möchten, starte ich eine gruppenbasierte Kohorte, in der ich persönlich mit Ihnen und einer kleinen Gruppe zusammenarbeiten werde, um Ihnen alles über die Prinzipien der Softwarearchitektur und des Softwaredesigns beizubringen. Bei Interesse können Sie das untenstehende Formular ausfüllen. https://forms.gle/SUAxrzRyvbnV8uCGA

Das obige ist der detaillierte Inhalt vonChromaDB für den SQL Mind. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1666
14
PHP-Tutorial
1273
29
C#-Tutorial
1253
24
Python: Spiele, GUIs und mehr Python: Spiele, GUIs und mehr Apr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

See all articles