Wie lade ich große Dateien effizient mit FastAPI hoch?
Hochladen großer Dateien mit der Serverseite von FastAPI
Der FastAPI-Server kann das Hochladen großer Dateien mithilfe der UploadFile-Klasse verarbeiten. Hier ist ein Beispiel:
async def uploadfiles(upload_file: UploadFile = File(...)): ...
Problem mit clientseitigen Anfragen
Beim Senden großer Dateien vom Client können aus folgenden Gründen Probleme auftreten:
- multipart/form-data Header: Die Anfrage des Clients sollte den Content-Type-Header als angeben multipart/form-data, gefolgt von der erforderlichen Grenzzeichenfolge. Wenn Sie jedoch keine Bibliothek zum Verarbeiten von Datei-Uploads verwenden, müssen Sie diesen Header manuell festlegen.
- MultipartEncoder-Verwendung: Stellen Sie sicher, dass der MultipartEncoder den Dateinamen einschließt, wenn er das Feld für upload_file deklariert.
- Bibliotheksempfehlungen: Verwendung veralteter Bibliotheken (z. B. request-toolbelt) für Datei-Uploads wird nicht empfohlen. Erwägen Sie stattdessen die Verwendung von Python-Anfragen oder HTTPX, da diese eine bessere Unterstützung für das Hochladen großer Dateien bieten.
Schnellere Option mit .stream()
Durch Zugriff auf die Anfrage body als Stream speichern, können Sie vermeiden, die gesamte Datei in den Speicher zu laden, was zu schnelleren Uploads führt. Dies kann mit der Methode .stream() erreicht werden. Hier ist ein Beispiel für die Verwendung der Streaming-Form-Data-Bibliothek:
from streaming_form_data import StreamingFormDataParser from streaming_form_data.targets import FileTarget request_body = await request.stream() parser = StreamingFormDataParser(headers=request.headers) parser.register('upload_file', FileTarget(filepath)) async for chunk in request_body: parser.data_received(chunk)
Alternative Option mit UploadFile und Form
Wenn Sie lieber einen regulären Verteidigungsendpunkt verwenden möchten, sind Sie hier richtig kann Datei-Uploads wie folgt verarbeiten:
from fastapi import File, UploadFile, Form, HTTPException, status import aiofiles import os CHUNK_SIZE = 1024 * 1024 @app.post("/upload") async def upload(file: UploadFile = File(...), data: str = Form(...)): try: filepath = os.path.join('./', os.path.basename(file.filename)) async with aiofiles.open(filepath, 'wb') as f: while chunk := await file.read(CHUNK_SIZE): await f.write(chunk) except Exception: raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail='There was an error uploading the file') finally: await file.close() return {"message": f"Successfuly uploaded {file.filename}"}
HTTPX-Client erhöhen Timeout
Bei Verwendung der HTTPX-Bibliothek müssen Sie möglicherweise das Timeout erhöhen, um Lese-Timeouts beim Hochladen großer Dateien zu verhindern.
timeout = httpx.Timeout(None, read=180.0)
Das obige ist der detaillierte Inhalt vonWie lade ich große Dateien effizient mit FastAPI hoch?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.
