Inhaltsverzeichnis
Histogramm der data
Kandidatenverteilungen
Passen Sie jede Verteilung an und berechnen Sie SSE
Drucken Sie die Verteilungsparameter für die beste Anpassung
Heim Backend-Entwicklung Python-Tutorial Wie kann ich mit Scipy in Python empirische Daten an theoretische Verteilungen anpassen?

Wie kann ich mit Scipy in Python empirische Daten an theoretische Verteilungen anpassen?

Nov 29, 2024 pm 09:30 PM

How Can I Fit Empirical Data to Theoretical Distributions Using Scipy in Python?

Anpassen der empirischen Verteilung an theoretische mit Scipy


Einführung


Sie haben eine Ein großer Datensatz ganzzahliger Werte und das Ziel, p-Werte zu berechnen, erhöhen die Wahrscheinlichkeit, auf sie zu stoßen Werte. Um diese Wahrscheinlichkeiten zu bestimmen, suchen Sie nach einer theoretischen Verteilung, die Ihrer Datenverteilung nahe kommt. In diesem Artikel wird untersucht, wie Sie dies mit dem Scipy-Paket von Python erreichen können.


Fitting Distributions


Das scipy.stats-Modul von Scipy bietet eine umfangreiche Sammlung kontinuierlicher und diskreter Wahrscheinlichkeitsverteilungen. Jede Verteilung hat ihre eigenen Parameter, die ihre Form und ihr Verhalten charakterisieren. Das Ziel besteht darin, anhand eines Anpassungstests die Verteilung zu finden, die am besten zu Ihren empirischen Daten passt.


Anpassungstests


< p>Anpassungstests messen die Diskrepanz zwischen einer empirischen Verteilung und einer theoretischen Verteilung. Zu den gängigen Tests gehören der Kolmogorov-Smirnov-Test und der Chi-Quadrat-Test. Scipy bietet Funktionen zur Durchführung dieser Tests, mit denen Sie die Fitness von Kandidatenverteilungen bewerten können.


Sum of Squared Error (SSE)


One Der Ansatz besteht darin, die Summe der quadratischen Fehler (SSE) als Maß für die Anpassungsgüte zu verwenden. SSE berechnet die quadrierte Differenz zwischen der empirischen und der theoretischen Wahrscheinlichkeitsdichtefunktion. Die Verteilung mit dem minimalen SSE gilt als die beste Anpassung.


Python-Implementierung


Der folgende Python-Code zeigt, wie Sie Ihre Daten an theoretische Verteilungen anpassen mit SSE:


<br>Pandas importieren als pd<br>numpy als np importieren<br>scipy.stats als st importieren<br>matplotlib.pyplot als plt importieren</p>
<p>data = pd.read_csv('data.csv') # Durch Ihre Datendatei ersetzen </p>
<h1 id="Histogramm-der-data">Histogramm der data</h1>
<p>plt.hist(data, bins=50)<br>plt.show()</p>
<h1 id="Kandidatenverteilungen">Kandidatenverteilungen</h1>
<p>dist_names = ['norm', 'expon', 'gamma', 'beta']</p>
<h1 id="Passen-Sie-jede-Verteilung-an-und-berechnen-Sie-SSE">Passen Sie jede Verteilung an und berechnen Sie SSE</h1>
<p>best_distribution = None<br>min_sse = np.inf<br>für dist in dist_names:</p>
<div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:php;toolbar:false">dist = getattr(st, dist)
params = dist.fit(data)

# Calculate SSE
sse = np.mean((dist.pdf(data, *params) - np.histogram(data, bins=50, density=True)[0]) ** 2)

# Update the best distribution if necessary
if sse < min_sse:
    min_sse = sse
    best_distribution = dist, params
Nach dem Login kopieren

Drucken Sie die Verteilungsparameter für die beste Anpassung

drucken (beste_verteilung[0].name, best_distribution[1])

Dieser Code liefert den Namen der am besten passenden Verteilung zusammen mit ihren geschätzten Parametern. Mit diesen Parametern können Sie p-Werte berechnen und die Anpassungsgüte der Verteilung bewerten.

Das obige ist der detaillierte Inhalt vonWie kann ich mit Scipy in Python empirische Daten an theoretische Verteilungen anpassen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1671
14
PHP-Tutorial
1276
29
C#-Tutorial
1256
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für wissenschaftliches Computer: Ein detailliertes Aussehen Python für wissenschaftliches Computer: Ein detailliertes Aussehen Apr 19, 2025 am 12:15 AM

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

See all articles