


In welcher Beziehung stehen „std::hardware_destructive_interference_size' und „std::hardware_constructive_interference_size' zur L1-Cache-Zeilengröße und welche Auswirkungen hat dies auf plattformübergreifenden Code?
Std::hardware_destructive_interference_size und std::hardware_constructive_interference_size verstehen
Diese Konstanten wurden in C 17 eingeführt, um eine portable Möglichkeit zum Ermitteln der Größe bereitzustellen der L1-Cache-Zeile. Ihre Beziehung zur Cache-Zeilengröße ist jedoch subtiler.
Wie hängen diese Konstanten mit der L1-Cache-Zeilengröße zusammen?
Theoretisch sollten diese Konstanten so sein entweder gleich oder größer als die L1-Cache-Zeilengröße sein. Dies liegt daran, dass die destruktive Interferenzgröße der minimale Versatz zwischen zwei Objekten ist, auf die von verschiedenen Threads zugegriffen wird, um eine falsche gemeinsame Nutzung zu vermeiden, während die konstruktive Interferenzgröße die maximale Größe zweier Objekte ist, die zusammen im Speicher platziert werden können, um eine echte gemeinsame Nutzung zu fördern.
In der Praxis stimmen die Werte dieser Konstanten jedoch aus mehreren Gründen möglicherweise nicht genau mit der L1-Cache-Zeilengröße überein. Erstens verwenden Compiler möglicherweise Heuristiken oder Umgebungshinweise, um die Größe der Cache-Zeile abzuschätzen, was möglicherweise nicht in allen Fällen genau ist. Zweitens kann die Größe der Cache-Zeile je nach Architektur der spezifischen Maschine, auf der der Code ausgeführt wird, variieren.
Gibt es ein gutes Beispiel, das ihre Anwendungsfälle demonstriert?
False Sharing tritt auf, wenn zwei oder mehr Threads auf unterschiedliche Teile derselben Cache-Zeile zugreifen, was dazu führt, dass die Cache-Zeile ungültig gemacht und häufig neu geladen wird. Dies kann zu erheblichen Leistungseinbußen führen. Um eine falsche gemeinsame Nutzung zu vermeiden, sollten Objekte, auf die von verschiedenen Threads zugegriffen wird, mindestens eine Cache-Zeile voneinander entfernt im Speicher abgelegt werden.
Eine echte gemeinsame Nutzung liegt vor, wenn zwei oder mehr Threads auf dieselbe Cache-Zeile zugreifen, wodurch die Cache-Zeile freigegeben werden kann einmal in den Cache geladen und von allen Threads gemeinsam genutzt. Dies kann zu einer erheblichen Leistungsverbesserung führen. Um eine echte gemeinsame Nutzung zu fördern, sollten Objekte, auf die von demselben Thread zugegriffen wird, so im Speicher abgelegt werden, dass sie in eine einzelne Cache-Zeile passen.
Beide sind als statische constexpr definiert. Ist das kein Problem, wenn Sie eine Binärdatei erstellen und diese auf anderen Computern mit unterschiedlichen Cache-Zeilengrößen ausführen? Wie kann es in diesem Szenario vor falscher Freigabe schützen, wenn Sie nicht sicher sind, auf welchem Computer Ihr Code ausgeführt wird?
Die statische Konstruktionsart dieser Konstanten stellt ein potenzielles Problem dar, wenn der Code ausgeführt wird verschiedene Maschinen mit unterschiedlichen Cache-Zeilengrößen. Wie bereits erwähnt, stimmen die Werte dieser Konstanten möglicherweise nicht genau mit der Größe der L1-Cache-Zeile überein, was zu einer falschen Freigabe oder verpassten Gelegenheiten für eine echte Freigabe führen kann.
Um dieses Problem zu entschärfen, können Sie Ihre eigenen Konstanten mit spezifischen Cache-Zeilengrößen für Ihre Zielarchitektur definieren. Alternativ können Sie die Konstanten std::hardware_destructive_interference_size und std::hardware_constructive_interference_size als Fallback-Werte verwenden und die tatsächliche Cache-Zeilengröße zur Laufzeit mithilfe plattformspezifischer Methoden überprüfen.
Das obige ist der detaillierte Inhalt vonIn welcher Beziehung stehen „std::hardware_destructive_interference_size' und „std::hardware_constructive_interference_size' zur L1-Cache-Zeilengröße und welche Auswirkungen hat dies auf plattformübergreifenden Code?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Die Geschichte und Entwicklung von C# und C sind einzigartig, und auch die Zukunftsaussichten sind unterschiedlich. 1.C wurde 1983 von Bjarnestrustrup erfunden, um eine objektorientierte Programmierung in die C-Sprache einzuführen. Sein Evolutionsprozess umfasst mehrere Standardisierungen, z. B. C 11 Einführung von Auto-Keywords und Lambda-Ausdrücken, C 20 Einführung von Konzepten und Coroutinen und sich in Zukunft auf Leistung und Programme auf Systemebene konzentrieren. 2.C# wurde von Microsoft im Jahr 2000 veröffentlicht. Durch die Kombination der Vorteile von C und Java konzentriert sich seine Entwicklung auf Einfachheit und Produktivität. Zum Beispiel führte C#2.0 Generics und C#5.0 ein, die eine asynchrone Programmierung eingeführt haben, die sich in Zukunft auf die Produktivität und das Cloud -Computing der Entwickler konzentrieren.

Es gibt signifikante Unterschiede in den Lernkurven von C# und C- und Entwicklererfahrung. 1) Die Lernkurve von C# ist relativ flach und für rasche Entwicklung und Anwendungen auf Unternehmensebene geeignet. 2) Die Lernkurve von C ist steil und für Steuerszenarien mit hoher Leistung und niedrigem Level geeignet.

C -Lernende und Entwickler können Ressourcen und Unterstützung von Stackoverflow, Reddits R/CPP -Community, Coursera und EDX -Kursen, Open -Source -Projekten zu Github, professionellen Beratungsdiensten und CPPCON erhalten. 1. Stackoverflow gibt Antworten auf technische Fragen. 2. Die R/CPP -Community von Reddit teilt die neuesten Nachrichten; 3.. Coursera und EDX bieten formelle C -Kurse; 4. Open Source -Projekte auf Github wie LLVM und Boost verbessern die Fähigkeiten; 5. Professionelle Beratungsdienste wie Jetbrains und Perforce bieten technische Unterstützung; 6. CPPCON und andere Konferenzen helfen Karrieren

C interagiert mit XML über Bibliotheken von Drittanbietern (wie Tinyxml, Pugixml, Xerces-C). 1) Verwenden Sie die Bibliothek, um XML-Dateien zu analysieren und in C-verarbeitbare Datenstrukturen umzuwandeln. 2) Konvertieren Sie beim Generieren von XML die C -Datenstruktur in das XML -Format. 3) In praktischen Anwendungen wird XML häufig für Konfigurationsdateien und Datenaustausch verwendet, um die Entwicklungseffizienz zu verbessern.

C hat immer noch wichtige Relevanz für die moderne Programmierung. 1) Hochleistungs- und direkte Hardware-Betriebsfunktionen machen es zur ersten Wahl in den Bereichen Spieleentwicklung, eingebettete Systeme und Hochleistungs-Computing. 2) Reiche Programmierparadigmen und moderne Funktionen wie Smart -Zeiger und Vorlagenprogrammierung verbessern seine Flexibilität und Effizienz. Obwohl die Lernkurve steil ist, machen sie im heutigen Programmierökosystem immer noch wichtig.

Die Anwendung der statischen Analyse in C umfasst hauptsächlich das Erkennen von Problemen mit Speicherverwaltung, das Überprüfen von Code -Logikfehlern und die Verbesserung der Codesicherheit. 1) Statische Analyse kann Probleme wie Speicherlecks, Doppelfreisetzungen und nicht initialisierte Zeiger identifizieren. 2) Es kann ungenutzte Variablen, tote Code und logische Widersprüche erkennen. 3) Statische Analysetools wie die Deckung können Pufferüberlauf, Ganzzahlüberlauf und unsichere API -Aufrufe zur Verbesserung der Codesicherheit erkennen.

Die Zukunft von C wird sich auf parallele Computer, Sicherheit, Modularisierung und KI/maschinelles Lernen konzentrieren: 1) Paralleles Computer wird durch Merkmale wie Coroutinen verbessert. 2) Die Sicherheit wird durch strengere Mechanismen vom Typ Überprüfung und Speicherverwaltung verbessert. 3) Modulation vereinfacht die Codeorganisation und die Kompilierung. 4) KI und maschinelles Lernen fordern C dazu auf, sich an neue Bedürfnisse anzupassen, wie z. B. numerische Computer- und GPU -Programmierunterstützung.

Durch die Verwendung der Chrono -Bibliothek in C können Sie Zeit- und Zeitintervalle genauer steuern. Erkunden wir den Charme dieser Bibliothek. Die Chrono -Bibliothek von C ist Teil der Standardbibliothek, die eine moderne Möglichkeit bietet, mit Zeit- und Zeitintervallen umzugehen. Für Programmierer, die in der Zeit gelitten haben.H und CTime, ist Chrono zweifellos ein Segen. Es verbessert nicht nur die Lesbarkeit und Wartbarkeit des Codes, sondern bietet auch eine höhere Genauigkeit und Flexibilität. Beginnen wir mit den Grundlagen. Die Chrono -Bibliothek enthält hauptsächlich die folgenden Schlüsselkomponenten: std :: chrono :: system_clock: repräsentiert die Systemuhr, mit der die aktuelle Zeit erhalten wird. std :: chron
