首页 > php教程 > 正文

程序员进阶篇之hash表的脾性

原创 2017-09-17 0 220

张炎泼先生于2016年加入白山云科技,主要负责对象存储研发、数据跨机房分布和修复问题解决等工作。以实现100PB级数据存储为目标,其带领团队完成全网分布存储系统的设计、实现与部署工作,将数据“冷”“热”分离,使冷数据成本压缩至1.2倍冗余度。

张炎泼先生2006年至2015年,曾就职于新浪,负责Cross-IDC PB级云存储服务的架构设计、协作流程制定、代码规范和实施标准制定及大部分功能实现等工作,支持新浪微博、微盘、视频、SAE、音乐、软件下载等新浪内部存储等业务;2015年至2016年,于美团担任高级技术专家,设计了跨机房的百PB对象存储解决方案:设计和实现高并发和高可靠的多副本复制策略,优化Erasure Code降低90%IO开销。

软件开发中,一个hash表相当于把n个key随机放入到b个bucket中,以实现n个数据在b个单位空间的存储。

我们发现hash表中存在一些有趣现象:

hash表中key的分布规律

当hash表中key和bucket数量一样时(n/b=1):

  • 37% 的bucket是空的

  • 37% 的bucket里只有1个key

  • 26% 的bucket里有1个以上的key(hash冲突)

下图直观的展示了当n=b=20时,hash表里每个bucket中key的数量(按照key的数量对bucket做排序):

图片描述

往往我们对hash表的第一感觉是:如果将key随机放入所有的bucket,bucket中key的数量较为均匀,每个bucket里key数量的期望是1。

而实际上,bucket里key的分布在n较小时非常不均匀;当n增大时,才会逐渐趋于平均。

key的数量对3类bucket数量的影响

下表表示当b不变,n增大时,n/b的值如何影响3类bucket的数量占比(冲突率即含有多于1个key的bucket占比):

图片描述

更直观一点,我们用下图来展示空bucket率和冲突率随n/b值的变化趋势:

图片描述

key数量对bucket均匀程度的影响

上面几组数字是当n/b较小时有意义的参考值,但随n/b逐渐增大,空bucket与1个key的bucket数量几乎为0,绝大多数bucket含有多个key。

当n/b超过1(1个bucket允许存储多个key), 我们主要观察的对象就转变成bucket里key数量的分布规律。

下表表示当n/b较大,每个bucket里key的数量趋于均匀时,不均匀的程度是多少。
为了描述这种不均匀的程度,我们使用bucket中key数量的最大值和最小值之间的比例((most-fewest)/most)来表示。

下表列出了b=100时,随n增大,key的分布情况。

图片描述

可以看出,随着bucket里key平均数量的增加,其分布的不均匀程度也逐渐降低。

和空bucket或1个key的bucket的占比不同n/b,均匀程度不仅取决于n/b的值,也受b值的影响,后面会提到。

未使用统计中常用的均方差法去描述key分布的不均匀程度,是因为软件开发过程中,更多时候要考虑最坏情况下所需准备的内存等资源。

Load Factor:n/b<0.75

hash表中常用一个概念 load factor α=n/b,来描述hash表的特征。

通常,基于内存存储的hash表,它的 n/b ≤0.75。这样设定,既可节省空间,也可以保持key的冲突率相对较低,低冲突率意味着低频率的hash重定位,hash表的插入会更快。

线性探测是一个经常被使用的解决插入时hash冲突的算法,它在1个bucket出现冲突时,按照逐步增加的步长顺序向后查看这个bucket后面的bucket,直到找到1个空bucket。因此它对hash的冲突非常敏感。

在n/b=0.75 这个场景中,如果不使用线性探测(譬如使用bucket内的链表来保存多个key),大约有47% 的bucket是空的;如果使用线性探测,这47%的bucket中,大约一半的bucket会被线性探测填充。

在很多内存hash表的实现中,选择n/b=<=0.75作为hash表的容量上限,不仅是考虑到冲突率随n/b增大而增大,更重要的是线性探测的效率会随着n/b的增大而迅速降低。

hash表特性小贴士:

  • hash表本身是一个通过一定的空间浪费来换取效率的算法。低时间开销(O(1))、低空间浪费、低冲突率,三者不可同时兼得;

  • hash表只适合纯内存数据结构的存储:

    • hash表通过空间浪费换取了访问速度的提升;磁盘的空间浪费是无法忍受的,但对内存的少许浪费是可接受的;

    • hash表只适合随机访问快的存储介质。硬盘上的数据存储更多使用btree或其他有序的数据结构。

  • 多数高级语言(内建hash table、hash set等)都保持 n/b≤<=0.75;

  • hash表在n/b较小时,不会均匀分配key。

Load Factor:n/b>1

另外一种hash表的实现,专门用来存储比较多的key,当 n/b>1n/b1.0时,线性探测失效(没有足够的bucket存储每个key)。这时1个bucket里不仅存储1个key,一般在一个bucket内用chaining,将所有落在这个bucket的key用链表连接起来,来解决冲突时多个key的存储。

链表只在n/b不是很大时适用。因为链表的查找需要O(n)的时间开销,对于非常大的n/b,有时会用tree替代链表来管理bucket内的key。

n/b值较大的使用场景之一是:将一个网站的用户随机分配到多个不同的web-server上,这时每个web-server可以服务多个用户。多数情况下,我们都希望这种分配能尽可能均匀,从而有效利用每个web-server资源。

这就要求我们关注hash的均匀程度。因此,接下来要讨论的是,假定hash函数完全随机的,均匀程度根据n和b如何变化。

n/b 越大,key的分布越均匀

当 n/b 足够大时,空bucket率趋近于0,且每个bucket中key的数量趋于平均。每个bucket中key数量的期望是:

avg=n/b

定义一个bucket平均key的数量是100%:bucket中key的数量刚好是n/b,下图分别模拟了 b=20,n/b分别为 10、100、1000时,bucket中key的数量分布。

图片描述
图片描述
图片描述

可以看出,当 n/b 增大时,bucket中key数量的最大值与最小值差距在逐渐缩小。下表列出了随b和n/b增大,key分布的均匀程度的变化:

图片描述

结论:

图片描述

计算

上述大部分结果来自于程序模拟,现在我们来解决从数学上如何计算这些数值。

每类bucket的数量

图片描述

空bucket数量

对于1个key, 它不在某个特定的bucket的概率是 (b−1)/b
所有key都不在某个特定的bucket的概率是( (b−1)/b)n

已知:

图片描述

空bucket率是:

图片描述

空bucket数量为:

图片描述

有1个key的bucket数量

n个key中,每个key有1/b的概率落到某个特定的bucket里,其他key以1-(1/b)的概率不落在这个bucket里,因此,对某个特定的bucket,刚好有1个key的概率是:

图片描述

刚好有1个key的bucket数量为:

图片描述

多个key的bucket

剩下即为含多个key的bucket数量:

图片描述

key在bucket中分布的均匀程度

类似的,1个bucket中刚好有i个key的概率是:n个key中任选i个,并都以1/b的概率落在这个bucket里,其他n-i个key都以1-1/b的概率不落在这个bucket里,即:

图片描述

这就是著名的二项式分布。

我们可通过二项式分布估计bucket中key数量的最大值与最小值。

通过正态分布来近似

当 n, b 都很大时,二项式分布可以用正态分布来近似估计key分布的均匀性:

p=1/b,1个bucket中刚好有i个key的概率为:

图片描述

1个bucket中key数量不多于x的概率是:

图片描述

所以,所有不多于x个key的bucket数量是:

图片描述

bucket中key数量的最小值,可以这样估算: 如果不多于x个key的bucket数量是1,那么这唯一1个bucket就是最少key的bucket。我们只要找到1个最小的x,让包含不多于x个key的bucket总数为1, 这个x就是bucket中key数量的最小值。

计算key数量的最小值x

一个bucket里包含不多于x个key的概率是:

图片描述

Φ(x) 是正态分布的累计分布函数,当x-μ趋近于0时,可以使用以下方式来近似:

图片描述

这个函数的计算较难,但只是要找到x,我们可以在[0~μ]的范围内逆向遍历x,以找到一个x 使得包含不多于x个key的bucket期望数量是1。

图片描述

x可以认为这个x就是bucket里key数量的最小值,而这个hash表中,不均匀的程度可以用key数量最大值与最小值的差异来描述: 因为正态分布是对称的,所以key数量的最大值可以用 μ + (μ-x) 来表示。最终,bucket中key数量最大值与最小值的比例就是:

图片描述

(μ是均值n/b)

程序模拟

以下python脚本模拟了key在bucket中分布的情况,同时可以作为对比,验证上述计算结果。

import sysimport mathimport timeimport hashlibdef normal_pdf(x, mu, sigma):
    x = float(x)
    mu = float(mu)

    m = 1.0 / math.sqrt( 2 * math.pi ) / sigma
    n = math.exp(-(x-mu)**2 / (2*sigma*sigma))return m * ndef normal_cdf(x, mu, sigma):
    # integral(-oo,x)

    x = float(x)
    mu = float(mu)
    sigma = float(sigma)    # to standard form
    x = (x - mu) / sigma

    s = x
    v = x    for i in range(1, 100):
        v = v * x * x / (2*i+1)
        s += v    return 0.5 + s/(2*math.pi)**0.5 * math.e ** (-x*x/2)def difference(nbucket, nkey):

    nbucket, nkey= int(nbucket), int(nkey)    # binomial distribution approximation by normal distribution
    # find the bucket with minimal keys.
    #
    # the probability that a bucket has exactly i keys is:
    #   # probability density function
    #   normal_pdf(i, mu, sigma)
    #
    # the probability that a bucket has 0 ~ i keys is:
    #   # cumulative distribution function
    #   normal_cdf(i, mu, sigma)
    #
    # if the probability that a bucket has 0 ~ i keys is greater than 1/nbucket, we
    # say there will be a bucket in hash table has:
    # (i_0*p_0 + i_1*p_1 + ...)/(p_0 + p_1 + ..) keys.
    p = 1.0 / nbucket
    mu = nkey * p
    sigma = math.sqrt(nkey * p * (1-p))

    target = 1.0 / nbucket
    minimal = mu    while True:

        xx = normal_cdf(minimal, mu, sigma)        if abs(xx-target) < target/10:            break

        minimal -= 1

    return minimal, (mu-minimal) * 2 / (mu + (mu - minimal))def difference_simulation(nbucket, nkey):

    t = str(time.time())
    nbucket, nkey= int(nbucket), int(nkey)

    buckets = [0] * nbucket    for i in range(nkey):
        hsh = hashlib.sha1(t + str(i)).digest()
        buckets[hash(hsh) % nbucket] += 1

    buckets.sort()
    nmin, mmax = buckets[0], buckets[-1]    return nmin, float(mmax - nmin) / mmaxif __name__ == "__main__":

    nbucket, nkey= sys.argv[1:]

    minimal, rate = difference(nbucket, nkey)    print 'by normal distribution:'
    print '     min_bucket:', minimal    print '     difference:', rate

    minimal, rate = difference_simulation(nbucket, nkey)    print 'by simulation:'
    print '     min_bucket:', minimal    print '     difference:', rate

以上就是程序员进阶篇之hash表的脾性的详细内容,更多请关注php中文网其它相关文章!

  • 相关标签:hash 程序员 脾性
  • 本文原创发布php中文网 ,转载请注明出处,感谢您的尊重!
  • 独孤九贱(4)_PHP视频教程

    江湖传言:PHP是世界上最好的编程语言。真的是这样吗?这个梗究竟是从哪来的?学会本课程,你就会明白了。 PHP中文网出品的PHP入门系统教学视频,完全从初学者的角度出发,绝不玩虚的,一切以实用、有用...

    独孤九贱(5)_ThinkPHP5视频教程

    ThinkPHP是国内最流行的中文PHP开发框架,也是您Web项目的最佳选择。《php.cn独孤九贱(5)-ThinkPHP5视频教程》课程以ThinkPHP5最新版本为例,从最基本的框架常识开始,将...

    ThinkPHP5实战之[教学管理系统]

    本套教程,以一个真实的学校教学管理系统为案例,手把手教会您如何在一张白纸上,从零开始,一步一步的用ThinkPHP5框架快速开发出一个商业项目。

    PHP入门视频教程之一周学会PHP

    所有计算机语言的学习都要从基础开始,《PHP入门视频教程之一周学会PHP》不仅是PHP的基础部分更主要的是PHP语言的核心技术,是学习PHP必须掌握的内容,任何PHP项目的实现都离不开这部分的内容,通...

    独孤九贱(1)_HTML5视频教程

    《php.cn原创html5视频教程》课程特色:php中文网原创幽默段子系列课程,以恶搞,段子为主题风格的php视频教程!轻松的教学风格,简短的教学模式,让同学们在不知不觉中,学会了HTML知识。 ...

    ThinkPHP5快速开发企业站点[全程实录]更新中...

    本课以最新版ThinkPHP5.0.10为基础进行开发,全程实录一个完整企业点,从后台到前台,从控制器到路由的全套完整教程,不论是你是新人,还是有一定开发经验的程序员,都可以从中学到实用的知识~~

    Thinkphp3.2.3个人博客开发

    ThinkPHP是一个快速、开源的轻量级国产PHP开发框架,是业内最流行的PHP框架之一。本课程以博客系统为例,讲述如何使用TP实战开发,从中学习Thinkphp的实践应用。模版下载地址:http:/...

    PHP实战天龙八部之仿爱奇艺电影网站

    本课程是php实战开发课程,以爱奇艺电影网站为蓝本从零开发一个自己的网站。目的是让大家了解真实项目的架构及开发过程

    独孤九贱(8)_php从零开始开发属于自己的php框架

    本课以一个极简的PHP开发框架为案例,向您展示了一个PHP框架应该具有的基本功能,以及具体的实现方法,让您快速对PHP开发框架的底层实现有一个清楚的认识,为以后学习其实的开发框架打下坚实的基础。

    独孤九贱(3)_JavaScript视频教程

    javascript是运行在浏览器上的脚本语言,连续多年,被评为全球最受欢迎的编程语言。是前端开发必备三大法器中,最具杀伤力。如果前端开发是降龙十八掌,好么javascript就是第18掌:亢龙有悔。...

    直播实录:PHP魔鬼训练营[从零开始制作个人博客]

    本站9月直播课已经结束,本套教程是直播实录,没有报上名或者漏听学员福利来了,赶紧看看吧,说不定这里就有你的菜

    2018前端入门_HTML5

    轻松明快,简洁生动,让你快速走入HTML5的世界,体会语义化开发的魅力

    JavaScript极速入门_玉女心经系列

    JavaScript能够称得上是史上使用最广泛的编程语言,也是前端开发必须掌握的三技能之一:描述网页内容的HTML、描述网页样式的CSS以及描述网页行为的JavaScript。本章节将帮助大家迅速掌握...

    PHP用户注册登录系统视频教程

    《php用户注册登录系统》主要介绍网站的登录注册功能,我们会从最简单的实现登录注册功能开始,增加验证码,cookie验证等,丰富网站的登录注册功能

    独孤九贱(7)_Bootstrap视频教程

    Bootstrap 是最受欢迎的 HTML、CSS 和 JS 框架,用于开发响应式布局、移动设备优先的 WEB 项目。为所有开发者、所有应用场景而设计,它让前端开发更快速、简单,所有开发者都能快速上手...

    PHP学生管理系统视频教程

    《PHP学生管理系统视频教程》主要给大家讲解了HTML,PHP,MySQL之间的相互协作,实现动态的网页显示和获取数据.

    独孤九贱(2)_CSS视频教程

    《php.cn独孤九贱(2)-css视频教程》课程特色:php中文网原创幽默段子系列课程,以恶搞,段子为主题风格的php视频教程!轻松的教学风格,简短的教学模式,让同学们在不知不觉中,学会了CSS知识...

    弹指间学会HTML视频教程

    《弹指间学会HTML视频教程》从最基本的概念开始讲起,步步深入,带领大家学习HTML,了解各种常用标签的意义以及基本用法,学习HTML知识为以后的学习打下基础

    独孤九贱(6)_jQuery视频教程

    jQuery是一个快速、简洁的JavaScript框架。设计的宗旨是“write Less,Do More”,即倡导写更少的代码,做更多的事情。它封装JavaScript常用的功能代码,提供一种简便的...

    最新微信小程序开发视频教程

    《最新微信小程序开发视频教程》本节课程是由微趋道录制,讲述了如何申请一个微信小程序,以及开发中需要使用哪些工具,和需要注意哪些等。

    • ringa_lee

      PHP开发工程师

    • php新手
    • 146篇
      文章总数
    • 220
      文章总浏览数

    头条

    推荐视频教程

  • javascript初级视频教程
  • jquery 基础视频教程
  • javascript三级联动视频教程
  • 独孤九贱(3)_JavaScript视频教程
  • 独孤九贱(6)_jQuery视频教程
  • 最新更新